0000000000073616
AUTHOR
P. Delhaes
Koexistenz mobiler und lokalisierter Elektronen in Salzen des Bis(ethylen)dithiotetrathiafulvalen-Radikals (BEDT-TTF) mit paramagnetischen Polyoxometallaten: Synthese und physikalische Eigenschaften von (BEDT-TTF)8[CoW12O40]·5.5H2O
Toward new organic/inorganic superlattices: Keggin polyoxometalates in Langmuir and Langmuir-Blodgett films
The effect of Keggin heteropolyoxotungstates (XW12O40n- with X = H2, P, Si, B or Co) on Langmuir films has been studied for monolayers of DODA (dimethyldioctadecylammonium) and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine). Marked modifications of the compression isotherms have been observed when the Keggin anions were dissolved in the subphase: this demonstrates that the polyanions interact with the monolayer. Langmuir−Blodgett (LB) films have been readily obtained from these systems (even with DPPC) for a particular range in polyanion concentration. X-ray diffraction and infrared dichroism experiments have shown a well-defined lamellar structure for these built-up films as well a…
Langmuir-Blodgett Films of Magnetic Clusters
Abstract The mixed-valence manganese clusters [Mn12O12(carboxylato)16] have been organized in a multilayer architecture. Indeed, well-defined Langmuir-Blodgett (LB) films of the acetate and the benzoate Mn12 clusters can be obtained using behenic acid as organic matrix. Here, we report the magnetic properties of these multilayers, which present a marked hysteresis at 2 K.
Langmuir-Blodgett films based on Prussian Blue derivatives: Towards new hybrid magnetic materials
Abstract The adsorption of dissolved Prussian Blue derivatives along a positively charged monolayer leads to new Langmuir-Blodgett (LB) films presenting a ferromagnetic state at low temperature. Such organic/inorganic systems containing inorganic sheets between organic amphiphilic layers constitute a new series of magnetic lamellar materials.
Spin crossover phenomenon of a semi-fluorinated iron (II) complex organized in a Langmuir–Blodgett film
Abstract A new amphiphilic iron (II) complex bearing semi-fluorinated chains has been organized in Langmuir and Langmuir–Blodgett (LB) films. This molecule forms a perfectly stable monolayer at the gas–water interface. Such a film can be transferred easily onto a solid substrate leading to well-defined multilayers. The spin crossover phenomenon occurring in this material has been studied by infrared spectroscopy and magnetization measurements. In the LB film architecture, the iron complex appears to be quenched in a high spin state. This quenching can be released after a thermal annealing and is therefore associated to the specific organization induced by the LB technique.