0000000000073727

AUTHOR

Hauke B. Werner

0000-0002-7710-5738

The Proteoglycan NG2 Is Complexed with α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors by the PDZ Glutamate Receptor Interaction Protein (GRIP) in Glial Progenitor Cells

The proteoglycan NG2 is expressed by immature glial cells in the developing and adult central nervous system. Using the COOH-terminal region of NG2 as bait in a yeast two-hybrid screen, we identified the glutamate receptor interaction protein GRIP1, a multi-PDZ domain protein, as an interacting partner. NG2 exhibits a PDZ binding motif at the extreme COOH terminus which binds to the seventh PDZ domain of GRIP1. In addition to the published expression in neurons, GRIP1 is expressed by immature glial cells. GRIP1 is known to bind to the GluRB subunit of the AMPA glutamate receptor expressed by subpopulations of neurons and immature glial cells. In cultures of primary oligodendrocytes, cells c…

research product

Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin.

Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, i…

research product

Myelin: Methods for Purification and Proteome Analysis

Molecular characterization of myelin is a prerequisite for understanding the normal structure of the axon/myelin-unit in the healthy nervous system and abnormalities in myelin-related disorders. However, reliable molecular profiles necessitate very pure myelin membranes, in particular when considering the power of highly sensitive "omics"-data acquisition methods. Here, we recapitulate the history and recent applications of myelin purification. We then provide our laboratory protocols for the biochemical isolation of a highly pure myelin-enriched fraction from mouse brains and for its proteomic analysis. We also supply methodological modifications when investigating posttranslational modifi…

research product

Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci

Peripheral nerve myelin facilitates rapid impulse conduction and normal motor and sensory functions. Many aspects of myelin biogenesis, glia–axonal interactions, and nerve homeostasis are poorly understood at the molecular level. We therefore hypothesized that only a fraction of all relevant myelin proteins has been identified so far. Combining gel-based and gel-free proteomic approaches, we identified 545 proteins in purified mouse sciatic nerve myelin, including 36 previously known myelin constituents. By mass spectrometric quantification, the predominant P0, periaxin, and myelin basic protein constitute 21, 16, and 8% of the total myelin protein, respectively, suggesting that their relat…

research product

Interaction of syntenin-1 and the NG2 proteoglycan in migratory oligodendrocyte precursor cells.

Migration of oligodendrocyte precursors along axons is a necessary prerequisite for myelination, but little is known about underlying mechanisms. NG2 is a large membrane proteoglycan implicated in oligodendrocyte migration. Here we show that a PDZ domain protein termed syntenin-1 interacts with NG2 and that syntenin-1 is necessary for normal rates of migration. The association of syntenin-1 with NG2, identified in a yeast two-hybrid screen, was confirmed by colocalization of both proteins within processes of oligodendroglial precursor cells and by coimmunoprecipitation from cell extracts. Syntenin-1 also colocalizes with NG2 in "co-capping" assays, demonstrating a lateral association of bot…

research product

Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confoca…

research product

Oligodendrocytes support axonal transport and maintenance via exosome secretion

Neurons extend long axons that require maintenance and are susceptible to degeneration. Long-term integrity of axons depends on intrinsic mechanisms including axonal transport and extrinsic support from adjacent glial cells. The mechanisms of support provided by myelinating oligodendrocytes to underlying axons are only partly understood. Oligodendrocytes release extracellular vesicles (EVs) with properties of exosomes, which upon delivery to neurons improve neuronal viability in vitro. Here, we show that oligodendroglial exosome secretion is impaired in 2 mouse mutants exhibiting secondary axonal degeneration due to oligodendrocyte-specific gene defects. Wild-type oligodendroglial exosomes …

research product

Myelin Proteome Analysis: Methods and Implications for the Myelin Cytoskeleton

Myelin, the multilayered membrane that enwraps and insulates neuronal axons for fast signal propagation, is a plasma membrane specialization of oligodendrocytes and Schwann cells in the central and peripheral nervous system, respectively. Here we provide our lab protocols for the puri fi cation of myelin from mouse brains and for gel-based and gel-free proteomic applications, as well as a brief discussion with respect to our current knowledge of the myelin cytoskeleton.

research product

Progressive axonopathy when oligodendrocytes lack the myelin protein CMTM5

AbstractOligodendrocytes facilitate rapid impulse propagation along the axons they myelinate and support their long-term integrity. However, the functional relevance of many myelin proteins has remained unknown. Here we find that expression of the tetraspan-transmembrane protein CMTM5 (Chemokine-like factor-like MARVEL-transmembrane domain containing protein 5) is highly enriched in oligodendrocytes and CNS myelin. Genetic disruption of the Cmtm5-gene in oligodendrocytes of mice does not impair the development or ultrastructure of CNS myelin. However, oligodendroglial Cmtm5-deficiency causes an early-onset progressive axonopathy, which we also observe in global and in tamoxifen-induced olig…

research product

Author response: Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

research product

A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system.

The formation of central nervous system myelin by oligodendrocytes requires sterol synthesis and is associated with a significant enrichment of cholesterol in the myelin membrane. However, it is unknown how oligodendrocytes concentrate cholesterol above the level found in nonmyelin membranes. Here, we demonstrate a critical role for proteolipids in cholesterol accumulation. Mice lacking the most abundant myelin protein, proteolipid protein (PLP), are fully myelinated, but PLP-deficient myelin exhibits a reduced cholesterol content. We therefore hypothesized that "high cholesterol" is not essential in the myelin sheath itself but is required for an earlier step of myelin biogenesis that is f…

research product

The transcriptome of mouse central nervous system myelin

AbstractRapid nerve conduction in the CNS is facilitated by insulation of axons with myelin, a specialized oligodendroglial compartment distant from the cell body. Myelin is turned over and adapted throughout life; however, the molecular and cellular basis of myelin dynamics remains elusive. Here we performed a comprehensive transcriptome analysis (RNA-seq) of myelin biochemically purified from mouse brains at various ages and find a surprisingly large pool of transcripts enriched in myelin. Further computational analysis showed that the myelin transcriptome is closely related to the myelin proteome but clearly distinct from the transcriptomes of oligodendrocytes and brain tissues, suggesti…

research product