0000000000073780

AUTHOR

Elena-catalina Neghina

0000-0002-4084-5855

showing 9 related works from this author

Feature selection with Ant Colony Optimization and its applications for pattern recognition in space imagery

2016

This paper presents a feature selection (FS) algorithm using Ant Colony Optimization (ACO). It is inspired by the particular behavior of real ants, namely by the fact that they are capable of finding the shortest path between a food source and the nest. There are considered two ACO-FS model applications for pattern recognition in remote sensing imagery: ACO Band Selection (ACO-BS) and ACO Training Label Purification (ACO-TLP). The ACO-BS reduces dimensionality of an input multispectral image data by selecting the “best” subset of bands to accomplish the classification task. The ACO-TLP selects the most informative training samples from a given set of labeled vectors in order to optimize the…

Computer sciencebusiness.industryAnt colony optimization algorithmsMultispectral imageFeature selectionPattern recognition02 engineering and technologyStatistical classification020204 information systemsPrincipal component analysisShortest path problem0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessClassifier (UML)Curse of dimensionality2016 International Conference on Communications (COMM)
researchProduct

Automatic detection of hemangiomas using unsupervised segmentation of regions of interest

2016

In this paper we compare the performances of three automatic methods of identifying hemangioma regions in images: 1) unsupervised segmentation using the Otsu method, 2) Fuzzy C-means clustering (FCM) and 3) an improved region growing algorithm based on FCM (RG-FCM). For each image, the starting point of the algorithms is a rectangular region of interest (ROI) containing the hemangioma. For computing the performances of each method, the ROIs had been manually labeled in 2 classes: pixels of hemangioma and pixels of non-hemangioma. The computed scores are given separately for each image, as well as global performances across all ROIs for both classes. The best classification of non-hemangioma…

0301 basic medicineComputer scienceScale-space segmentation02 engineering and technologyOtsu's methodHemangioma03 medical and health sciencessymbols.namesakeMinimum spanning tree-based segmentationRegion of interestHistogram0202 electrical engineering electronic engineering information engineeringmedicineComputer visionSegmentation-based object categorizationbusiness.industryPattern recognitionImage segmentationmedicine.diseaseStatistical classification030104 developmental biologyRegion growingsymbols020201 artificial intelligence & image processingArtificial intelligencebusiness2016 International Conference on Communications (COMM)
researchProduct

A genetic algorithm approach to purify the classifier training labels for the analysis of remote sensing imagery

2017

This paper proposes a Genetic Algorithm (GA) approach to clean a given classifier training set for remote sensing image analysis. Starting from an initial set of training data, the new method called GA-Training Label Purifying (GA-TLP) consists of the significant training sample selection using GAs in order to maximize the classifier accuracy. This means to retain the most informative samples and to remove the uncertain, redundant, and misclassified ones. As a result of the selection process, we can obtain a purified training set. The proposed model is implemented and evaluated using a LANDSAT 7 ETM+ image. The experimental results confirm the effectiveness of the proposed approach.

Sample selectionSupport vector machineTraining set020204 information systemsGenetic algorithm0211 other engineering and technologies0202 electrical engineering electronic engineering information engineering02 engineering and technologyClassifier (UML)021101 geological & geomatics engineeringRemote sensing2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct

Training label cleaning with ant colony optimization for classification of remote sensing imagery

2015

This paper presents an original approach for improving performances of the supervised classifiers in remote sensing imagery by proposing a technique to refine a given training set using Ant Colony Optimization (ACO). The new method called ACO-Training Label Cleaning (ACO-TLC) applies ACO model for selection of the significant training samples from a given set of labeled vectors in order to optimize the quality of a supervised classifier. This means to retain the most informative samples and to remove the uncertain or misclassified training samples, which lead to classification errors. As a result of the selection process, we can obtain a purified training set. The proposed model is implemen…

Support vector machineTraining setComputer sciencebusiness.industryAnt colony optimization algorithmsArtificial intelligenceMachine learningcomputer.software_genrebusinesscomputerClassifier (UML)Remote sensing2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct

An Artificial Bee Colony Approach for Classification of Remote Sensing Imagery

2018

This paper presents a novel Artificial Bee Colony (ABC) approach for supervised classification of remote sensing images. One proposes to apply an ABC algorithm to optimize the coefficients of the set of polynomial discriminant functions. We have experimented the proposed ABC-based classifier algorithm for a Landsat 7 ETM+ image database, evaluating the influence of the ABC model parameters on the classifier performances. Such ABC model parameters are: numbers of employed/onlooker/scout bees, number of epochs, and polynomial degree. One has compared the best ABC classifier Overall Accuracy (OA) with the performances obtained using a set of benchmark classifiers (NN, NP, RBF, and SVM). The re…

021103 operations researchArtificial neural networkComputer science0211 other engineering and technologies02 engineering and technologyArtificial bee colony algorithmSupport vector machineStatistical classificationAbc modelComputingMethodologies_PATTERNRECOGNITIONDiscriminant0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingDegree of a polynomialClassifier (UML)Remote sensing2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)
researchProduct

Automatic Monitoring System for the Evolution of the Hemangiomas

2019

In this paper we describe an automatic monitoring system for the evolution of infantile hemangiomas using a fuzzy logic system based on two parameters: area and redness. To follow the evolution, we have used for each subject pairs of images at different moments of time. The starting points of the algorithm are the rectangular regions of interest (ROI), manually selected for each of the two images, and automatically segmented using Otsu’s method in combination with different preprocessing methods. Using the results of segmentation, we could compute the evolution of the area and the evolution of the redness of hemangioma. These two parameters were used as input for the fuzzy logic system, obt…

Fuzzy logic systemComputer sciencebusiness.industryMonitoring systemPattern recognitionmedicine.diseaseFuzzy logicOtsu's methodHemangiomasymbols.namesakemedicinesymbolsPreprocessorSegmentationArtificial intelligencebusiness2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE)
researchProduct

Automatic Detection of Infantile Hemangioma using Convolutional Neural Network Approach

2020

Infantile hemangioma is the most common tumor of childhood. This study proposes an automatic detection as a preliminary step for a further accurate monitoring tool to evaluate the clinical status of hemangioma. For the detection of hemangioma pixels, a convolutional neural network (CNN) was trained on patches of two classes (hemangioma and nonhemangioma) from the train dataset, and then it was used to classify all the pixels of the region of interest from the test dataset. In order to evaluate the results of segmentation obtained with CNN, the region of interest of the test dataset was also segmented using two classical methods of segmentation: fuzzy c-means clustering (FCM) and segmentatio…

business.industryComputer sciencePattern recognitionImage segmentationmedicine.diseaseConvolutional neural networkOtsu's methodHemangiomasymbols.namesakeRegion of interestHistogramsymbolsmedicineSegmentationArtificial intelligencebusinessCluster analysis2020 International Conference on e-Health and Bioengineering (EHB)
researchProduct

Automatic monitoring system for the detection and evaluation of the evolution of hemangiomas

2016

In this paper we introduce an automatic monitoring system for the detection and the evaluation of the evolution of hemangiomas using a fuzzy logic system based on two parameters: area and redness. We have considered pairs of images (from two different moments in time) that show hemangiomas either evolving, stationary or regressing. The starting points of the algorithm are the rectangular regions of interest (ROI), manually selected for each of the two images, and automatically segmented using Fuzzy C-means. Using the area and the redness of the hemagiomas extracted with Fuzzy C-means, for the same patient, at different moments of time, the algorithm decides whether the hemangioma is evolvin…

0301 basic medicineMatching (graph theory)Computer sciencebusiness.industryFeature extractionFuzzy setMonitoring systemImage segmentationmedicine.diseaseFuzzy logicHemangioma03 medical and health sciences030104 developmental biologymedicineComputer visionArtificial intelligencebusiness2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)
researchProduct

Infantile Hemangioma Detection using Deep Learning

2020

Infantile hemangiomas are the most common type of benign tumor which appear in the first weeks of life. As currently there is no robust protocol to monitor and assess the hemangioma status, this study proposes a preliminary method to detect the lesion. Therefore, in this paper we describe a hemangiomas classifier based on a linear convolutional neural network architecture. The challenge was to achieve a good classification using a relatively small internal database of 240 images from 40 different patients. The results are promising as the CNN performance evaluation showed a level of accuracy on the test set of 93.84%. Five metrics were calculated to assess the proposed model performances: a…

business.industryComputer scienceDeep learning05 social sciencesEarly detection050801 communication & media studiesPattern recognitionmedicine.diseaseConvolutional neural networkBenign tumorHemangiomaLesion0508 media and communicationsTest set0502 economics and businessInfantile hemangiomamedicine050211 marketingArtificial intelligencemedicine.symptombusinessClassifier (UML)2020 13th International Conference on Communications (COMM)
researchProduct