0000000000073846
AUTHOR
Valentin Poenaru
k-Weakly almost convex groups and ? 1 ? $$\tilde M^3 $$
We extend Cannon's notion ofk-almost convex groups which requires that for two pointsx, y on then-sphere in the Cayley graph which can be joined by a pathl1 of length ≤k, there is a second pathl2 in then-ball, joiningx andy, of bounded length ≤N(k). Ourk-weakly almost convexity relaxes this condition by requiring only thatl1 ∝l2 bounds a disk of area ≤C1(k)n1 - e(k) +C2(k). IfM3 is a closed 3-manifold with 3-weakly almost convex fundamental group, then π1∞\(\tilde M^3 = 0\).
A Group-theoretical Finiteness Theorem
We start with the universal covering space $${\*M^n}$$ of a closed n-manifold and with a tree of fundamental domains which zips it $${T\longrightarrow\*M^n}$$ . Our result is that, between T and $${\* M^n}$$ , is an intermediary object, $${T\stackrel{p} {\longrightarrow} G \stackrel{F}{\longrightarrow} \*M^n}$$ , obtained by zipping, such that each fiber of p is finite and $${T\stackrel{p}{\longrightarrow}G\stackrel{F}{\longrightarrow} \*M^n}$$ admits a section.