AIOC2: A deep Q-learning approach to autonomic I/O congestion control in Lustre
Abstract In high performance computing systems, I/O congestion is a common problem in large-scale distributed file systems. However, the current implementation mainly requires administrator to manually design low-level implementation and optimization, we proposes an adaptive I/O congestion control framework, named AIOC 2 , which can not only adaptively tune the I/O congestion control parameters, but also exploit the deep Q-learning method to start the training parameters and optimize the tuning for different types of workloads from the server and the client at the same time. AIOC 2 combines the feedback-based dynamic I/O congestion control and deep Q-learning parameter tuning technology to …