0000000000074032

AUTHOR

Francesca Caloni

Climate Change and Effects on Molds and Mycotoxins

Earth’s climate is undergoing adverse global changes as an unequivocal result of anthropogenic activity. The occurring environmental changes are slowly shaping the balance between plant growth and related fungal diseases. Climate (temperature, available water, and light quality/quantity; as well as extreme drought, desertification, and fluctuations of humid/dry cycles) represents the most important agroecosystem factor influencing the life cycle stages of fungi and their ability to colonize crops, survive, and produce toxins. The ability of mycotoxigenic fungi to respond to Climate Change (CC) may induce a shift in their geographical distribution and in the pattern of mycotoxin occurrence. …

research product

A Review of the Mycotoxin Enniatin B

Mycotoxin enniatin B (ENN B) is a secondary metabolism product by Fusarium fungi. It is a well-known antibacterial, antihelmintic, antifungal, herbicidal, and insecticidal compound. It has been found as a contaminant in several food commodities, particularly in cereal grains, co-occurring also with other mycotoxins. The primary mechanism of action of ENN B is mainly due to its ionophoric characteristics, but the exact mechanism is still unclear. In the last two decades, it has been a topic of great interest since its potent mammalian cytotoxic activity was demonstrated in several mammalian cell lines. Moreover, the co-exposure in vitro with other mycotoxins enhances its toxic potential thro…

research product