0000000000074350

AUTHOR

Nicolas Sangouard

showing 5 related works from this author

Atom-photon, atom-atom and photon-photon entanglement preparation via fractional adiabatic passage

2004

We propose a relatively robust scheme to generate maximally entangled states of (i) an atom and a cavity photon, (ii) two atoms in their ground states, and (iii) two photons in two spatially separate high-Q cavities. It is based on the interaction via fractional adiabatic passage of a three-level atom traveling through a cavity mode and a laser beam. The presence of optical phases is emphasized.

PhysicsQuantum PhysicsPhoton[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]FOS: Physical sciencesPhysics::OpticsQuantum numberAtomic and Molecular Physics and OpticsPhoton entanglementAtomPhysics::Accelerator PhysicsPhysics::Atomic PhysicsAtomic physicsAdiabatic processQuantum Physics (quant-ph)Laser beams
researchProduct

Fast SWAP gate by adiabatic passage

2005

We present a process for the construction of a SWAP gate which does not require a composition of elementary gates from a universal set. We propose to employ direct techniques adapted to the preparation of this specific gate. The mechanism, based on adiabatic passage, constitutes a decoherence-free method in the sense that spontaneous emission and cavity damping are avoided.

PhysicsQuantum PhysicsQuantum decoherenceFOS: Physical sciencesUniversal setHardware_PERFORMANCEANDRELIABILITYTopologyAtomic and Molecular Physics and OpticsQuantum circuitComputer Science::Hardware ArchitectureQuantum gateComputer Science::Emerging Technologies[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Controlled NOT gateQuantum mechanicsHardware_INTEGRATEDCIRCUITSSpontaneous emissionQuantum Physics (quant-ph)Adiabatic processQuantum computerHardware_LOGICDESIGN
researchProduct

Arbitrary state controlled-unitary gate by adiabatic passage

2006

We propose a robust scheme involving atoms fixed in an optical cavity to directly implement the universal controlled-unitary gate. The present technique based on adiabatic passage uses novel dark states well suited for the controlled-rotation operation. We show that these dark states allow the robust implementation of a gate that is a generalisation of the controlled-unitary gate to the case where the control qubit can be selected to be an arbitrary state. This gate has potential applications to the rapid implementation of quantum algorithms such as of the projective measurement algorithm. This process is decoherence-free since excited atomic states and cavity modes are not populated during…

PhysicsQuantum PhysicsCluster stateFOS: Physical sciencesAtomic and Molecular Physics and OpticsQuantum circuitDark stateQuantum gateComputer Science::Emerging Technologies[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Controlled NOT gateQubitQuantum mechanicsQuantum Physics (quant-ph)Trapped ion quantum computerQuantum computer
researchProduct

Control of Localization and Suppression of Tunneling by Adiabatic Passage

2004

We show that a field of frequency $\ensuremath{\omega}$ combined with its second harmonic $2\ensuremath{\omega}$ driving a double-well potential allows us to localize the wave packet by adiabatic passage, starting from the delocalized ground state. The relative phase of the fields allows us to choose the well of localization. We can suppress (and restore) the tunneling subsequently by switching on (and off) abruptly the fields at well-defined times. The mechanism relies on the fact that the dynamics is driven to an eigenstate of the Floquet Hamiltonian which is a localized state.

PhysicsFloquet theoryQuantum opticsGeneral Physics and AstronomyCondensed Matter::Mesoscopic Systems and Quantum Hall Effectsymbols.namesakeDelocalized electronQuantum mechanicssymbolsCoherent statesAdiabatic processGround stateHamiltonian (quantum mechanics)Quantum tunnellingPhysical Review Letters
researchProduct

Preparation of coherent superposition in a three-state system by adiabatic passage

2004

We examine the topology of eigenenergy surfaces associated to a three-state system driven by two quasi-resonant fields. We deduce mechanisms that allow us to generate various coherent superposition of two states using an additional field, far off resonances. We report the numerical validations in mercury atoms as a model system, creating the coherent superpositions of two excited states and of two states coupled by a Raman process.

Physicssymbols.namesakeSuperposition principleStark effectExcited stateNumerical analysisQuantum mechanicssymbolsEigenfunctionAdiabatic processAtomic and Molecular Physics and OpticsRaman scatteringEigenvalues and eigenvectorsPhysical Review A
researchProduct