0000000000075239

AUTHOR

Subir K. Das

showing 19 related works from this author

Do the contact angle and line tension of surface-attached droplets depend on the radius of curvature?

2018

Results from Monte Carlo simulations of wall-attached droplets in the three-dimensional Ising lattice gas model and in a symmetric binary Lennard-Jones fluid, confined by antisymmetric walls, are analyzed, with the aim to estimate the dependence of the contact angle $(\Theta)$ on the droplet radius $(R)$ of curvature. Sphere-cap shape of the wall-attached droplets is assumed throughout. An approach, based purely on "thermodynamic" observables, e.g., chemical potential, excess density due to the droplet, etc., is used, to avoid ambiguities in the decision which particles belong (or do not belong, respectively) to the droplet. It is found that the results are compatible with a variation $[\Th…

Materials scienceStatistical Mechanics (cond-mat.stat-mech)Tension (physics)Antisymmetric relationMonte Carlo methodNucleationFOS: Physical sciences02 engineering and technologyMechanicsCondensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesRadius of curvature (optics)Contact anglePhysics::Fluid Dynamics0103 physical sciencesThermodynamic limitSoft Condensed Matter (cond-mat.soft)General Materials Science010306 general physics0210 nano-technologyCondensed Matter - Statistical MechanicsLine (formation)
researchProduct

Phase Behavior of Active Swimmers in Depletants: Molecular Dynamics and Integral Equation Theory

2013

We study the structure and phase behavior of a binary mixture where one of the components is self-propelling in nature. The inter-particle interactions in the system were taken from the Asakura-Oosawa model, for colloid-polymer mixtures, for which the phase diagram is known. In the current model version the colloid particles were made active using the Vicsek model for self-propelling particles. The resultant active system was studied by molecular dynamics methods and integral equation theory. Both methods produce results consistent with each other and demonstrate that the Vicsek model based activity facilitates phase separation, thus broadening the coexistence region.

Current (mathematics)PolymersMovementFOS: Physical sciencesGeneral Physics and AstronomyBinary numberCondensed Matter - Soft Condensed MatterMolecular Dynamics SimulationModels BiologicalDiffusionMolecular dynamicsColloidPhase (matter)ColloidsStatistical physicsCondensed Matter - Statistical MechanicsPhase diagramPhysicsStatistical Mechanics (cond-mat.stat-mech)Active systemsModels TheoreticalIntegral equationCondensed Matter::Soft Condensed MatterKineticsClassical mechanicsModels ChemicalSoft Condensed Matter (cond-mat.soft)Physical Review Letters
researchProduct

Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study.

2010

We study the excess free energy due to phase coexistence of fluids by Monte Carlo simulations using successive umbrella sampling in finite LxLxL boxes with periodic boundary conditions. Both the vapor-liquid phase coexistence of a simple Lennard-Jones fluid and the coexistence between A-rich and B-rich phases of a symmetric binary (AB) Lennard-Jones mixture are studied, varying the density rho in the simple fluid or the relative concentration x_A of A in the binary mixture, respectively. The character of phase coexistence changes from a spherical droplet (or bubble) of the minority phase (near the coexistence curve) to a cylindrical droplet (or bubble) and finally (in the center of the misc…

PhysicsBinodalStatistical Mechanics (cond-mat.stat-mech)Spinodal decompositionNucleationFOS: Physical sciencesGeneral Physics and AstronomyTolman lengthCondensed Matter - Soft Condensed MatterCurvatureMolecular physicsSurface energyPhysics::Fluid DynamicsPhase (matter)Soft Condensed Matter (cond-mat.soft)Periodic boundary conditionsPhysical and Theoretical ChemistryCondensed Matter - Statistical MechanicsThe Journal of chemical physics
researchProduct

Phase Behavior and Microscopic Transport Processes in Binary Metallic Alloys: Computer Simulation Studies

2009

In a binary liquid mixture, different kinds of phase transitions can occur that are associated with various mass transport phenomena in the liquid. First, there is the possibility that the liquid undergoes a liquid-liquid demixing transition [1]. Near the critical point of this transition, a slowing down of dynamic properties is observed which is characterized, e.g., by a vanishing interdiffusion coefficient at the critical point [2, 3]. Another possible phase transition is a first-order transition of the liquid into a crystalline structure. In this case, crystal nucleation and growth are limited by the diffusive transport in the liquid [1, 4]. In a binary liquid, crystal nucleation process…

Phase transitionMaterials scienceCondensed matter physicsNucleationMicroscopic scalelaw.inventionCondensed Matter::Soft Condensed MatterMolecular dynamicslawChemical physicsCritical point (thermodynamics)MetastabilityCrystallizationGlass transition
researchProduct

Simulation of Transport in Partially Miscible Binary Fluids: Combination of Semigrandcanonical Monte Carlo and Molecular Dynamics Methods

2004

Binary Fluids that exhibit a miscibility gap are ubiquitous in nature (glass melts, polymer solutions and blends, mixtures of molten metals, etc.) and exhibit a delicate interplay between static and dynamic properties. This is exemplified for a simple model system, the symmetrical AB Lennard-Jones mixture. It is shown how semigrandcanonical Monte Carlo methods, that include A→B (B→A) identity switches as Monte Carlo moves, can yield the phase diagram, the interfacial tension between coexisting phases, and various pair correlation functions and structure factors. In addition to the build-up of long-ranged concentration correlations near the critical point, unmixing is also accompanied by the…

Condensed Matter::Soft Condensed MatterBinodalMolecular dynamicsMaterials scienceCritical point (thermodynamics)Spinodal decompositionMonte Carlo methodDynamic Monte Carlo methodThermodynamicsStatistical physicsPhase diagramMonte Carlo molecular modeling
researchProduct

Universal critical behavior of curvature-dependent interfacial tension.

2011

From the analysis of Monte Carlo simulations of a binary Lennard-Jones mixture in the coexistence region, we provide evidence that the curvature dependence of the interfacial tension can be described by a simple theoretical function σ(R)ξ(2)=C(1)/[1+C(2)(ξ/R)(2)], where ξ is the correlation length and R is the droplet radius. The universal constants C(1) and C(2) are estimated. In the model, a Tolman length is strictly absent, but, since its critical behavior is believed to be much weaker than ξ, we argue that it only provides a correction to scaling and does not affect the leading critical behavior, which should be described by the above function for any system in the Ising universality cl…

Surface tensionPhysicsCondensed matter physicsPhysical constantGeneral Physics and AstronomyTolman lengthIsing modelRadiusRenormalization groupCurvatureScalingPhysical review letters
researchProduct

Spinodal decomposition in thin films: Molecular-dynamics simulations of a binary Lennard-Jones fluid mixture

2005

We use molecular dynamics (MD) to simulate an unstable homogeneous mixture of binary fluids (AB), confined in a slit pore of width $D$. The pore walls are assumed to be flat and structureless, and attract one component of the mixture (A) with the same strength. The pair-wise interactions between the particles is modeled by the Lennard-Jones potential, with symmetric parameters that lead to a miscibility gap in the bulk. In the thin-film geometry, an interesting interplay occurs between surface enrichment and phase separation. We study the evolution of a mixture with equal amounts of A and B, which is rendered unstable by a temperature quench. We find that A-rich surface enrichment layers fo…

Surface (mathematics)SpinodalMolecular dynamicsMaterials scienceComponent (thermodynamics)Spinodal decompositionFOS: Physical sciencesThermodynamicsBinary numberDisordered Systems and Neural Networks (cond-mat.dis-nn)WettingCondensed Matter - Disordered Systems and Neural NetworksThin filmPhysical Review E
researchProduct

Critical Dynamics in a Binary Fluid: Simulations and Finite-Size Scaling

2006

We report comprehensive simulations of the critical dynamics of a symmetric binary Lennard-Jones mixture near its consolute point. The self-diffusion coefficient exhibits no detectable anomaly. The data for the shear viscosity and the mutual-diffusion coefficient are fully consistent with the asymptotic power laws and amplitudes predicted by renormalization-group and mode-coupling theories {\it provided} finite-size effects and the background contribution to the relevant Onsager coefficient are suitably accounted for. This resolves a controversy raised by recent molecular simulations.

PhysicsBinary fluidStatistical Mechanics (cond-mat.stat-mech)Shear viscosityDynamics (mechanics)FOS: Physical sciencesGeneral Physics and AstronomyBinary numberAmplitudePoint (geometry)Statistical physicsAnomaly (physics)ScalingCondensed Matter - Statistical MechanicsPhysical Review Letters
researchProduct

Kinetics of phase separation in thin films: simulations for the diffusive case.

2005

We study the diffusion-driven kinetics of phase separation of a symmetric binary mixture (AB), confined in a thin-film geometry between two parallel walls. We consider cases where (a) both walls preferentially attract the same component (A), and (b) one wall attracts A and the other wall attracts B (with the same strength). We focus on the interplay of phase separation and wetting at the walls, which is referred to as {\it surface-directed spinodal decomposition} (SDSD). The formation of SDSD waves at the two surfaces, with wave-vectors oriented perpendicular to them, often results in a metastable layered state (also referred to as ``stratified morphology''). This state is reminiscent of th…

SpinodalMaterials scienceMorphology (linguistics)Condensed matter physicsSpinodal decompositionKineticsFOS: Physical sciencesCondensed Matter - Soft Condensed MatterCondensed Matter::Soft Condensed MatterPhysics::Fluid DynamicsMetastabilityPerpendicularSoft Condensed Matter (cond-mat.soft)WettingThin filmPhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct

Structural relaxation in a binary metallic melt: Molecular dynamics computer simulation of undercooledAl80Ni20

2008

Molecular dynamics computer simulations are performed to study structure and structural relaxation in the glassforming metallic alloy ${\text{Al}}_{80}{\text{Ni}}_{20}$. The interactions between the particles are modeled by an effective potential of the embedded atom type. Our model of ${\text{Al}}_{80}{\text{Ni}}_{20}$ exhibits chemical short-range order (CSRO) that is reflected in a broad prepeak around a wave number of $1.8\text{ }{\text{\AA{}}}^{\ensuremath{-}1}$ in the partial static structure factor for the Ni-Ni correlations. The CSRO is due to the preference of Ni atoms to have Al rather than Ni atoms as nearest neighbors. By analyzing incoherent and coherent intermediate scattering…

PhysicsMolecular dynamicsCondensed matter physicsScatteringRelaxation (NMR)AtomOrder (ring theory)Type (model theory)Condensed Matter PhysicsCoupling (probability)Structure factorElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct

Activity mediated phase separation: Can we understand phase behavior of the nonequilibrium problem from an equilibrium approach?

2016

We present results for structure and dynamics of mixtures of active and passive particles, from molecular dynamics (MD) simulations and integral equation theory (IET) calculations, for a physically motivated model. The perfectly passive limit of the model corresponds to the phase-separating Asakura-Oosawa model for colloid-polymer mixtures in which, for the present study, the colloids are made self-propelling by introducing activity in accordance with the well known Vicsek model. Such activity facilitates phase separation further, as confirmed by our MD simulations and IET calculations. Depending upon the composition of active and passive particles, the diffusive motion of the active specie…

ChemistryDynamics (mechanics)General Physics and AstronomyNon-equilibrium thermodynamicsActive systems02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIntegral equationMolecular dynamicsPhase (matter)0103 physical sciencesStatistical physicsLimit (mathematics)Physical and Theoretical Chemistry010306 general physics0210 nano-technologyThe Journal of Chemical Physics
researchProduct

Simulation of binary fluids exposed to selectively adsorbing walls: a method to estimate contact angles and line tensions

2011

For an understanding of interfacial phenomena of fluids on the nanoscale a detailed knowledge of the excess free energies of fluids due to walls is required, as well as of the interfacial tension between coexisting fluid phases. A description of simulation approaches to solve this task is given for a suitable model binary (A + B) fluid. Sampling the order parameter distribution of the system without walls, the curvature dependent and flat interfacial tensions of coexisting ‘bulk’ phases is extracted. In a thin film geometry, the difference in wall free energies is found via a new thermodynamic integration method. Thus the contact angle θ of macroscopic droplets is estimated from Young's equ…

Thermal equilibriumMaterials scienceMonte Carlo methodBiophysicsNucleationThermodynamicsThermodynamic integrationMechanicsCondensed Matter PhysicsCurvaturePhysics::Fluid DynamicsSurface tensionContact anglePhysical and Theoretical ChemistryThin filmMolecular BiologyMolecular Physics
researchProduct

Simulation of surface-controlled phase separation in slit pores: Diffusive Ginzburg-Landau kinetics versus Molecular Dynamics

2008

The phase separation kinetics of binary fluids in constrained geometry is a challenge for computer simulation, since nontrivial structure formation occurs extending from the atomic scale up to mesoscopic scales, and a very large range of time needs to be considered. One line of attack to this problem is to try nevertheless standard Molecular Dynamics (MD), another approach is to coarse-grain the model to apply a time-dependent nonlinear Ginzburg–Landau equation that is numerically integrated. For a symmetric binary mixture confined between two parallel walls that prefer one species, both approaches are applied and compared to each other. There occurs a nontrivial interplay between the forma…

PhysicsSurface (mathematics)Mesoscopic physicswettingStructure formationComponent (thermodynamics)domain growthGeneral Physics and AstronomyMechanicsAtomic unitssurface-directed spinodal decompositionNonlinear systemMolecular dynamicstime-dependent Ginzburg–Landau equationHardware and ArchitectureStatistical physicsbinary Lennard–Jones mixtureLine (formation)
researchProduct

Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid

2010

When a phase-separated binary ($A+B$) mixture is exposed to a wall, that preferentially attracts one of the components, interfaces between A-rich and B-rich domains in general meet the wall making a contact angle $\theta$. Young's equation describes this angle in terms of a balance between the $A-B$ interfacial tension $\gamma_{AB}$ and the surface tensions $\gamma_{wA}$, $\gamma_{wB}$ between, respectively, the $A$- and $B$-rich phases and the wall, $\gamma _{AB} \cos \theta =\gamma_{wA}-\gamma_{wB}$. By Monte Carlo simulations of bridges, formed by one of the components in a binary Lennard-Jones liquid, connecting the two walls of a nanoscopic slit pore, $\theta$ is estimated from the inc…

Surface (mathematics)PhysicsCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)Monte Carlo methodGeneral Physics and AstronomyThermodynamic integrationFOS: Physical sciencesComputational Physics (physics.comp-ph)Contact angleSurface tensionPhysics::Fluid DynamicsDistribution functionWetting transitionPhysics - Computational PhysicsScalingCondensed Matter - Statistical Mechanics
researchProduct

Kinetics of Domain Growth and Aging in a Two-Dimensional Off-lattice System

2020

We have used molecular dynamics simulations for a comprehensive study of phase separation in a two-dimensional single component off-lattice model where particles interact through the Lennard-Jones potential. Via state-of-the-art methods we have analyzed simulation data on structure, growth and aging for nonequilibrium evolutions in the model. These data were obtained following quenches of well-equilibrated homogeneous configurations, with density close to the critical value, to various temperatures inside the miscibility gap, having vapor-"liquid" as well as vapor-"solid" coexistence. For the vapor-liquid phase separation we observe that $\ell$, the average domain length, grows with time ($…

PhysicsSpinodal decompositionKineticsCrystal systemNon-equilibrium thermodynamicsThermodynamicsFOS: Physical sciencesCondensed Matter - Soft Condensed MatterCritical value01 natural sciences010305 fluids & plasmasPhase (matter)0103 physical sciencesExponentSoft Condensed Matter (cond-mat.soft)010306 general physicsScaling
researchProduct

Surface-directed spinodal decomposition: Lattice model versus Ginzburg-Landau theory

2009

When a binary mixture is quenched into the unstable region of the phase diagram, phase separation starts by spontaneous growth of long-wavelength concentration fluctuations ("spinodal decomposition"). In the presence of surfaces, the latter provide nontrivial boundary conditions for this growth. These boundary conditions can be derived from lattice models by suitable continuum approximations. But the lattice models can also be simulated directly, and thus used to clarify the conditions under which the Ginzburg–Landau type theory is valid. This comparison shows that the latter is accurate only in the immediate vicinity of the bulk critical point, if thermal fluctuations can also be neglecte…

PhysicsSpinodalwettingCondensed matter physicsSpinodal decompositionBinary mixturesThermal fluctuationsStatistical and Nonlinear PhysicsCondensed Matter PhysicsKawasaki kinetic Ising modelCritical point (thermodynamics)Lattice (order)computer simulationGinzburg–Landau theoryBoundary value problemStatistical physicsphase separationPhase diagram
researchProduct

Molecular dynamics study of phase separation kinetics in thin films.

2005

We use molecular dynamics to simulate experiments where a symmetric binary fluid mixture (AB), confined between walls that preferentially attract one component (A), is quenched from the one-phase region into the miscibility gap. Surface enrichment occurs during the early stages, yielding a B-rich mixture in the film center with well-defined A-rich droplets. The droplet size grows with time as l(t) proportional t(2/3) after a transient regime. The present atomistic model is also compared to mesoscopic coarse-grained models for this problem.

Physics::Fluid DynamicsMolecular dynamicsMesoscopic physicsBinary fluidMaterials scienceChemical physicsComponent (thermodynamics)Spinodal decompositionKineticsGeneral Physics and AstronomyStatistical physicsWettingThin filmPhysical review letters
researchProduct

Kinetics of phase separation in thin films: Lattice versus continuum models for solid binary mixtures

2008

A description of phase separation kinetics for solid binary (A,B) mixtures in thin film geometry based on the Kawasaki spin-exchange kinetic Ising model is presented in a discrete lattice molecular field formulation. It is shown that the model describes the interplay of wetting layer formation and lateral phase separation, which leads to a characteristic domain size $\ell(t)$ in the directions parallel to the confining walls that grows according to the Lifshitz-Slyozov $t^{1/3}$ law with time $t$ after the quench. Near the critical point of the model, the description is shown to be equivalent to the standard treatments based on Ginzburg-Landau models. Unlike the latter, the present treatmen…

wettingMaterials scienceStatistical Mechanics (cond-mat.stat-mech)Condensed matter physicscritical pointsGinzburg-Landau theoryTime evolutionFOS: Physical sciencesBinary numberfree energyLattice constantthin filmsCritical point (thermodynamics)Lattice (order)Ising modelWettingphase separationThin filmCondensed Matter - Statistical MechanicsWetting layerPhysical Review E
researchProduct

Relaxation in a phase-separating two-dimensional active matter system with alignment interaction

2020

Via computer simulations we study kinetics of pattern formation in a two-dimensional active matter system. Self-propulsion in our model is incorporated via the Vicsek-like activity, i.e., particles have the tendency of aligning their velocities with the average directions of motion of their neighbors. In addition to this dynamic or active interaction, there exists passive inter-particle interaction in the model for which we have chosen the standard Lennard-Jones form. Following quenches of homogeneous configurations to a point deep inside the region of coexistence between high and low density phases, as the systems exhibit formation and evolution of particle-rich clusters, we investigate pr…

PhysicsStatistical Mechanics (cond-mat.stat-mech)010304 chemical physicsRelaxation (NMR)AutocorrelationFOS: Physical sciencesGeneral Physics and AstronomyPattern formationCondensed Matter - Soft Condensed Matter010402 general chemistry01 natural sciences0104 chemical sciencesActive matterChemical physicsPhase (matter)0103 physical sciencesSoft Condensed Matter (cond-mat.soft)Limit (mathematics)Physical and Theoretical ChemistryFocus (optics)ScalingCondensed Matter - Statistical MechanicsThe Journal of Chemical Physics
researchProduct