0000000000075577
AUTHOR
Tomio Petrosky
Harmonic oscillator model for the atom-surface Casimir-Polder interaction energy
In this paper we consider a quantum harmonic oscillator interacting with the electromagnetic radiation field in the presence of a boundary condition preserving the continuous spectrum of the field, such as an infinite perfectly conducting plate. Using an appropriate Bogoliubov-type transformation we can diagonalize exactly the Hamiltonian of our system in the continuum limit and obtain non-perturbative expressions for its ground-state energy. From the expressions found, the atom-wall Casimir-Polder interaction energy can be obtained, and well-know lowest-order results are recovered as a limiting case. Use and advantage of this method for dealing with other systems where perturbation theory …
Nonperturbative approach for the electronic Casimir-Polder effect in a one-dimensional semiconductor
We present the electronic Casimir-Polder effect for a system consisting of two impurities on a one-dimensional semiconductor quantum wire. Due to the charge transfer from the impurity to a one-dimensional conduction band, the impurity states are dressed by a virtual cloud of the electron field. The attractive electronic Casimir force arises due to the overlap of the virtual clouds. The Van Hove singularity causes the persistent bound state (PBS) to appear below the band edge even when the bare impurity state energy is above the band edge. Since the decay rate of the virtual cloud of the PBS in space is small, the Casimir force can be of a very long range. While the overlap of the electronic…
Enhanced resonant force between two entangled identical atoms in a photonic crystal
We consider the resonant interaction energy and force between two identical atoms, one in an excited state and the other in the ground state, placed inside a photonic crystal. The atoms, having the same orientation of their dipole moment, are supposed prepared in their symmetrical state and interact with the quantum electromagnetic field. We consider two specific models of photonic crystals: a one-dimensional model and an isotropic model. We show that in both cases the resonant interatomic force can be strongly enhanced by the presence of the photonic crystal, as a consequence of the modified dispersion relation and density of states, in particular if the transition frequency of the atoms i…
Analysis of high-harmonic generation in terms of complex Floquet spectral analysis
Recent developments on intense laser sources is opening a new field of optical sciences. An intense coherent light beam strongly interacting with the matter causes a coherent motion of a particle, forming a strongly dressed excited particle. A photon emission from this dressed excited particle is a strong nonlinear process causing high-harmonic generation (HHG), where the perturbation analysis is broken down. In this work, we study a coherent photon emission from a strongly dressed excited atom in terms of complex spectral analysis in the extended Floquet-Hilbert-space. We have obtained the eigenstates of the total Hamiltonian with use of Feshbach-Brilloiun-Wigner projection method. In this…