0000000000075900

AUTHOR

Christina Lambertz

showing 3 related works from this author

Single Particle Plasmon Sensors as Label-Free Technique To Monitor MinDE Protein Wave Propagation on Membranes.

2016

We use individual gold nanorods as pointlike detectors for the intrinsic dynamics of an oscillating biological system. We chose the pattern forming MinDE protein system from Escherichia coli (E. coli), a prominent example for self-organized chemical oscillations of membrane-associated proteins that are involved in the bacterial cell division process. Similar to surface plasmon resonance (SPR), the gold nanorods report changes in their protein surface coverage without the need for fluorescence labeling, a technique we refer to as NanoSPR. Comparing the dynamics for fluorescence labeled and unlabeled proteins, we find a reduction of the oscillation period by about 20%. The absence of photoble…

0301 basic medicineLipid BilayersAnalytical chemistryBioengineeringCell Cycle Proteins02 engineering and technologyBiosensing Techniques03 medical and health sciencesMin SystemEscherichia coliGeneral Materials ScienceSurface plasmon resonancePlasmonFluorescent DyesAdenosine TriphosphatasesNanotubesOscillationChemistryMechanical EngineeringEscherichia coli ProteinsGeneral ChemistrySurface Plasmon Resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsFluorescencePhotobleaching030104 developmental biologyBiophysicsNanorodGold0210 nano-technologyBiosensorNano letters
researchProduct

Plasmonic Nanosensors for the Determination of Drug Effectiveness on Membrane Receptors.

2016

We demonstrate the potential of the NanoSPR (nanoscale surface plasmon resonance sensors) method as a simple and cheap tool for the quantitative study of membrane protein–protein interactions. We use NanoSPR to determine the effectiveness of two potential drug candidates that inhibit the protein complex formation between FtsA and ZipA at initial stages of bacterial division. As the NanoSPR method relies on individual gold nanorods as sensing elements, there is no need for fluorescent labels or organic cosolvents, and it provides intrinsically high statistics. NanoSPR could become a powerful tool in drug development, drug delivery, and membrane studies.

0301 basic medicineDrugMaterials sciencemedia_common.quotation_subjectNanotechnologyCell Cycle Proteins02 engineering and technology03 medical and health sciencesBacterial ProteinsNanosensorEscherichia coliGeneral Materials ScienceSurface plasmon resonancePlasmonmedia_commonEscherichia coli ProteinsSurface Plasmon Resonance021001 nanoscience & nanotechnologyNanostructuresCytoskeletal Proteins030104 developmental biologyMembraneDrug developmentDrug deliveryFtsA0210 nano-technologyCarrier ProteinsProtein BindingACS applied materialsinterfaces
researchProduct

Narrowing the Plasmonic Sensitivity Distribution by Considering the Individual Size of Gold Nanorods

2018

The plasmonic nanoparticle sensitivity, sensing volume, and the signal-to-noise ratio are strongly dependent on the nanoparticle dimensions. It is difficult to chemically produce or purify nanoparticles with a size variation of less than 10%. This size variation induces a systematic error in sensing experiments that can be reduced when the exact size of each individual nanoparticle is known. In this work, we show how the size of gold nanorods can be estimated directly from the optical spectra of single nanoparticles by using the increase of radiation damping with the nanoparticle size. We verify our approach by comparing these spectrally estimated sizes with the precise sizes of exactly the…

Materials sciencebusiness.industryScanning electron microscopePhysics::Medical PhysicsPhysics::OpticsNanoparticle02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyRadiation dampingColloidal goldOptoelectronicsParticleNanorodSensitivity (control systems)Physical and Theoretical Chemistry0210 nano-technologybusinessPlasmonThe Journal of Physical Chemistry C
researchProduct