0000000000075901

AUTHOR

Petra Schwille

Single Particle Plasmon Sensors as Label-Free Technique To Monitor MinDE Protein Wave Propagation on Membranes.

We use individual gold nanorods as pointlike detectors for the intrinsic dynamics of an oscillating biological system. We chose the pattern forming MinDE protein system from Escherichia coli (E. coli), a prominent example for self-organized chemical oscillations of membrane-associated proteins that are involved in the bacterial cell division process. Similar to surface plasmon resonance (SPR), the gold nanorods report changes in their protein surface coverage without the need for fluorescence labeling, a technique we refer to as NanoSPR. Comparing the dynamics for fluorescence labeled and unlabeled proteins, we find a reduction of the oscillation period by about 20%. The absence of photoble…

research product

Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features

6 p.-4 fig.

research product

Pores Formed by Baxα5 Relax to a Smaller Size and Keep at Equilibrium

AbstractPores made by amphipathic cationic peptides (e.g., antimicrobials and fragments of pore-forming proteins) are typically studied by examining the kinetics of vesicle leakage after peptide addition or obtaining structural measurements in reconstituted peptide-lipid systems. In the first case, the pores have been considered transient phenomena that allow the relaxation of the peptide-membrane system. In the second, they correspond to equilibrium structures at minimum free energy. Here we reconcile both approaches by investigating the pore activity of the α5 fragment from the proapoptotic protein Bax (Baxα5) before and after equilibrium of peptide/vesicle complexes. Quenching assays on …

research product

Pore Formation by a Bax-Derived Peptide: Effect on the Line Tension of the Membrane Probed by AFM

AbstractBax is a critical regulator of physiological cell death that increases the permeability of the outer mitochondrial membrane and facilitates the release of the so-called apoptotic factors during apoptosis. The molecular mechanism of action is unknown, but it probably involves the formation of partially lipidic pores induced by Bax. To investigate the interaction of Bax with lipid membranes and the physical changes underlying the formation of Bax pores, we used an active peptide derived from helix 5 of this protein (Bax-α5) that is able to induce Bax-like pores in lipid bilayers. We report the decrease of line tension due to peptide binding both at the domain interface in phase-separa…

research product