0000000000075903
AUTHOR
Francesco A. Evangelista
Analytic gradients for Mukherjee’s multireference coupled-cluster method using two-configurational self-consistent-field orbitals
Analytic gradients for the state-specific multireference coupled-cluster method suggested by Mahapatra et al. [Mol. Phys. 94, 157 (1998)] (Mk-MRCC) are reported within the singles and doubles approximation using two-configurational self-consistent field (TCSCF) orbitals. The present implementation extends our previous work on Mk-MRCC gradients [E. Prochnow et al., J. Chem. Phys. 131, 064109 (2009)] which is based on restricted Hartree-Fock orbitals and consequently the main focus of the present paper is on the treatment of orbital relaxation at the TCSCF level using coupled-perturbed TCSCF theory. Geometry optimizations on m-arynes and nitrenes are presented to illustrate the influence of t…
Analytic gradients for the state-specific multireference coupled cluster singles and doubles model.
The general theory of analytic energy gradients is presented for the state-specific multireference coupled cluster method introduced by Mukherjee and co-workers [Mol. Phys. 94, 157 (1998)], together with an implementation within the singles and doubles approximation, restricted to two closed-shell determinants and Hartree-Fock orbitals. Expressions for the energy gradient are derived based on a Lagrangian formalism and cast in a density-matrix notation suitable for implementation in standard quantum-chemical program packages. In the present implementation, we exploit a decomposition of the multireference coupled cluster gradient expressions, i.e., lambda equations and the corresponding dens…
Psi4: an open-source ab initio electronic structure program
The Psi4 program is a new approach to modern quantum chemistry, encompassing Hartree–Fock and density-functional theory to configuration interaction and coupled cluster. The program is written entirely in C++ and relies on a new infrastructure that has been designed to permit high-efficiency computations of both standard and emerging electronic structure methods on conventional and high-performance parallel computer architectures. Psi4 offers flexible user input built on the Python scripting language that enables both new and experienced users to make full use of the program's capabilities, and even to implement new functionality with moderate effort. To maximize its impact and usefulness, …
Insights into the orbital invariance problem in state-specific multireference coupled cluster theory.
In this communication we report the results of our studies on the orbital invariance properties of the state-specific multireference coupled cluster approach suggested by Mukherjee and co-workers (Mk-MRCC). In particular, we have gathered numerical evidence to show that even when the linear excitation manifold is modified in order to span the same space for each reference, the resulting method is not orbital invariant. In order to test this conjecture we have proposed a new truncation scheme (Mk-MRCCSDtq) which, in addition to full single and double excitations, contains partial triple and quadruple excitations. For a reference space generated by all possible combinations of two electrons i…
Alternative single-reference coupled cluster approaches for multireference problems: the simpler, the better.
We report a general implementation of alternative formulations of single-reference coupled cluster theory (extended, unitary, and variational) with arbitrary-order truncation of the cluster operator. These methods are applied to compute the energy of Ne and the equilibrium properties of HF and C(2). Potential energy curves for the dissociation of HF and the BeH(2) model computed with the extended, variational, and unitary coupled cluster approaches are compared to those obtained from the multireference coupled cluster approach of Mukherjee et al. [J. Chem. Phys. 110, 6171 (1999)] and the internally contracted multireference coupled cluster approach [F. A. Evangelista and J. Gauss, J. Chem. …
Perturbative triples corrections in state-specific multireference coupled cluster theory
We formulated and implemented a perturbative triples correction for the state-specific multireference coupled cluster approach with singles and doubles suggested by Mukherjee and co-workers, Mk-MRCCSD [Mol. Phys. 94, 157 (1998)]. Our derivation of the energy correction [Mk-MRCCSD(T)] is based on a constrained search for stationary points of the Mk-MRCC energy functional together with a perturbative expansion with respect to the appearing triples cluster operator. The Lambda-Mk-MRCCSD(T) approach derived in this way consists in (1) a correction to the off-diagonal matrix elements of the effective Hamiltonian which is unique to coupled cluster methods based on the Jeziorski-Monkhorst ansatz, …
On the approximation of the similarity-transformed Hamiltonian in single-reference and multireference coupled cluster theory
Abstract We consider the recursive single commutator (RSC) approximation of the Baker–Campbell–Hausdorff expansion introduced by Yanai and Chan [T. Yanai, G.K.-L. Chan, J. Chem. Phys. 124 (2006) 194106] and apply it in order to approximate the similarity transformation of the Hamiltonian in both traditional and unitary coupled cluster theory. The equilibrium bond distance, harmonic vibrational frequency, and anharmonic constant of H2, HF, N2, CuH, and Cu2 were computed using the coupled cluster approach with single and double excitations (CCSD) and CCSD with the RSC approximation of the similarity-transformed Hamiltonian (CCSD-RSC). Our results demonstrate that the RSC approximation introdu…
An orbital-invariant internally contracted multireference coupled cluster approach.
We have formulated and implemented an internally contracted multireference coupled cluster (ic-MRCC) approach aimed at solving two of the problems encountered in methods based on the Jeziorski-Monkhorst ansatz: (i) the scaling of the computational and memory costs with respect to the number of references, and (ii) the lack of invariance of the energy with respect to rotations among active orbitals. The ic-MRCC approach is based on a straightforward generalization of the single-reference coupled cluster ansatz in which an exponential operator is applied to a multiconfigurational wave function. The ic-MRCC method truncated to single and double excitations (ic-MRCCSD) yields very accurate pote…