0000000000075917

AUTHOR

G. Shur

showing 4 related works from this author

Evidence for heterogeneous chlorine activation in the tropical UTLS

2011

Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brazil, February 2005) and SCOUT-O<sub>3</sub> (Darwin, Australia, November/December 2005) field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt) were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations are associated with low temperatures or with the presence of cirrus clouds (often both), suggesting that cirrus ice particles and/or liquid …

Atmospheric Scienceairborne in-situ observationChemistrychemistry.chemical_elementAtmosphärische SpurenstoffeAtmospheric sciencesNitrogenlcsh:QC1-999JGas phaseAerosollcsh:ChemistryTropospherelcsh:QD1-999ddc:550ChlorineLife ScienceCirrusStratospherelcsh:Physics
researchProduct

In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism

2011

New particle formation (NPF), which generates nucleation mode aerosol, was observed in the tropical Upper Troposphere (UT) and Tropical Tropopause Layer (TTL) by in situ airborne measurements over South America (January–March 2005), Australia (November–December 2005), West Africa (August 2006) and Central America (2004–2007). Particularly intense NPF was found at the bottom of the TTL. Measurements with a set of condensation particle counters (CPCs) with different <i>d</i><sub>p50</sub> (50% lower size detection efficiency diameter or "cut-off diameter") were conducted on board the M-55 <i>Geophysica</i> in the altitude range of 12.0–20.5 km and on board …

Atmospheric Science010504 meteorology & atmospheric sciencesDISPERSION MODEL FLEXPARTaerosolnucleationNucleationclouds010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencestropicsTropospherelcsh:Chemistrynew particle formationddc:550Cloud condensation nucleiLife ScienceStratosphere0105 earth and related environmental sciencesGeophysica[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph][SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereIce cloudAtmosphärische SpurenstoffeFalconlcsh:QC1-999AerosolJAQUEOUS SULFURIC-ACIDlcsh:QD1-99913. Climate actionClimatologyupper troposphereEnvironmental scienceOutflowAEROSOL NUCLEATIONLOWER STRATOSPHERETropopauselcsh:PhysicsGALACTIC COSMIC-RAYS
researchProduct

Nitric Acid Trihydrate (NAT) formation at low NAT supersaturation in Polar Stratospheric Clouds (PSCs)

2005

International audience; A PSC was detected on 6 February 2003 in the Arctic stratosphere by in-situ measurements onboard the high-altitude research aircraft Geophysica. Low number densities (~10-4cm-3) of small nitric acid (HNO3) containing particles (dTNAT, these NAT particles have the potential to grow further and to remove HNO3 from the stratosphere, thereby enhancing polar ozone loss. Interestingly, the NAT particles formed in less than a day at temperatures just slightly below TNAT (T>TNAT-3.1K). This unique measurement of PSC formation at extremely low NAT saturation ratios (SNAT?10) constrains current NAT nucleation theories. We suggest, that the NAT particles have formed heterogeneo…

Atmospheric Science010504 meteorology & atmospheric sciencesAnalytical chemistryNucleation010402 general chemistryAtmospheric sciences01 natural scienceslcsh:Chemistrychemistry.chemical_compoundNitric acidStratosphere0105 earth and related environmental sciences[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereSupersaturationChemistrylcsh:QC1-9990104 chemical sciencesThe arcticozonelcsh:QD1-99913. Climate actionNatpolar stratospheric cloud (PSC)PolarSaturation (chemistry)nitric acid trihydrate (NAT)lcsh:Physics
researchProduct

Unprecedented evidence for deep convection hydrating the tropical stratosphere

2008

[1] We report on in situ and remote sensing measurements of ice particles in the tropical stratosphere found during the Geophysica campaigns TROCCINOX and SCOUT-O3. We show that the deep convective systems penetrated the stratosphere and deposited ice particles at altitudes reaching 420 K potential temperature. These convective events had a hydrating effect on the lower tropical stratosphere due to evaporation of the ice particles. In contrast, there were no signs of convectively induced dehydration in the stratosphere.

ConvectionDeep convectionGeophysicsAltitudeEvaporationGeneral Earth and Planetary SciencesPotential temperatureAtmospheric sciencesStratosphereGeologyGeophysical Research Letters
researchProduct