0000000000075921

AUTHOR

N. Sitnikov

Evidence for heterogeneous chlorine activation in the tropical UTLS

Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brazil, February 2005) and SCOUT-O<sub>3</sub> (Darwin, Australia, November/December 2005) field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt) were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations are associated with low temperatures or with the presence of cirrus clouds (often both), suggesting that cirrus ice particles and/or liquid …

research product

Detection of reactive nitrogen containing particles in the tropopause region? Evidence for a tropical nitric acid trihydrage (NAT) belt

The detection of nitric acid trihydrate (NAT, HNO<sub>3</sub>×3H<sub>2</sub>O) particles in the tropical transition layer (TTL) harmonizes our understanding of polar stratospheric cloud formation. Large reactive nitrogen (NO<sub>y</sub>) containing particles were observed on 8 August 2006 by instruments onboard the high altitude research aircraft M55-Geophysica near and below the tropical tropopause. The particles, most likely NAT, have diameters less than 6 μm and concentrations below 10<sup>-4</sup> cm<sup>−3</sup>. The NAT particle layer was repeatedly detected at altitudes between 15.1 and 17.5 km ove…

research product

Unprecedented evidence for deep convection hydrating the tropical stratosphere

[1] We report on in situ and remote sensing measurements of ice particles in the tropical stratosphere found during the Geophysica campaigns TROCCINOX and SCOUT-O3. We show that the deep convective systems penetrated the stratosphere and deposited ice particles at altitudes reaching 420 K potential temperature. These convective events had a hydrating effect on the lower tropical stratosphere due to evaporation of the ice particles. In contrast, there were no signs of convectively induced dehydration in the stratosphere.

research product

Ice supersaturations and cirrus cloud crystal numbers

Upper tropospheric observations outside and inside of cirrus clouds indicate water vapour mixing ratios sometimes exceeding water saturation. Relative humidities over ice (RHice) of up to and more than 200% have been reported from aircraft and balloon measurements in recent years. From these observations a lively discussion continues on whether there is a lack of understanding of ice cloud microphysics or whether the water measurements are tainted with large uncertainties or flaws. Here, RHice in clear air and in ice clouds is investigated. Strict quality-checked aircraft in situ observations of RHice were performed during 28 flights in tropical, mid-latitude and Arctic field experiments in…

research product