0000000000076250

AUTHOR

Manfred Weidmann

0000-0002-7063-7491

showing 4 related works from this author

A novel cytotoxin from Clostridium difficile serogroup F is a functional hybrid between two other large clostridial cytotoxins.

1999

Abstract The large clostridial cytotoxins (LCTs) constitute a group of high molecular weight clostridial cytotoxins that inactivate cellular small GTP-binding proteins. We demonstrate that a novel LCT (TcdB-1470) from Clostridium difficile strain 1470 is a functional hybrid between “reference” TcdB-10463 andClostridium sordellii TcsL-1522. It bound to the same specific receptor as TcdB-10463 but glucosylated the same GTP-binding proteins as TcsL-1522. All three toxins had equal enzymatic potencies but were equally cytotoxic only when microinjected. When applied extracellularly TcdB-1470 and TcdB-10463 were considerably more potent cytotoxins than TcsL-1522. The small GTP-binding protein R-R…

GlycosylationRecombinant Fusion ProteinsCellBacterial ToxinsGTPasemedicine.disease_causeBiochemistryMiceClostridiummedicineCell AdhesionCytotoxic T cellAnimalsReceptorCytotoxicityMolecular BiologyDNA Primerschemistry.chemical_classificationbiologyBase SequenceToxinClostridioides difficileCytotoxinsCell Biology3T3 Cellsbiology.organism_classificationmedicine.anatomical_structureEnzymeBiochemistrychemistryMicroscopy Electron ScanningThe Journal of biological chemistry
researchProduct

Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile.

1997

To analyse the transcription pattern of the five tcdA-E genes of the pathogenicity locus (PaLoc) of Clostridium difficile a protocol was established to purify RNA from strain VPI10463. Transcription analysis of the five tcdA-E genes showed that they were all transcribed. In the early exponential phase, a high level of tcdC and low levels of tcdA,B,D,E transcripts were detectable; this was inverted in the stationary phase, suggesting that TcdC might have a negative influence on transcription of the other genes. Three transcription initiation sites, one for tcdA and two for tcdB were determined by primer extension analysis. Readthrough transcripts from outside the locus were not obtainable, s…

DNA BacterialTranscription GeneticBacterial ToxinsMolecular Sequence DataLocus (genetics)Helix-turn-helixBiologymedicine.disease_causeBiochemistryPolymerase Chain ReactionPrimer extensionchemistry.chemical_compoundEnterotoxinsBacterial ProteinsTranscription (biology)medicineAmino Acid SequencePromoter Regions GeneticGeneDNA PrimersRegulation of gene expressionGeneticsBase SequenceSequence Homology Amino AcidVirulenceClostridioides difficileClostridium perfringensMolecular biologyDNA-Binding ProteinsRepressor ProteinschemistryGenes BacterialDNAEuropean journal of biochemistry
researchProduct

Genetic rearrangements in the pathogenicity locus of Clostridium difficile strain 8864 – implications for transcription, expression and enzymatic act…

1998

The pathogenicity locus (PaLoc) of Clostridium difficile isolate 8864 was investigated to locate genetic rearrangements that would explain the exceptional pathogenicity of this particular isolate. Two major changes were defined: an insertion of 1.1 kb between the two genes tcdA and tcdE, coding for the enterotoxin and an accessory protein of unknown function, respectively, and a deletion of 5.9 kb encompassing the 3' ends of tcdA and tcdC. Transcription of the tcdA-E genes is severely affected by both rearrangements, explaining the demonstrated complete lack of TcdA polypeptide. We present a model of coordinate, growth-related transcription of the tcdA-E genes that confirms our previous fin…

GlycosylationGlycoside HydrolasesTranscription GeneticBacterial ToxinsMolecular Sequence DataLocus (genetics)Chromosomal translocationEnterotoxinBiologyHomology (biology)law.inventionBacterial ProteinsGTP-Binding ProteinslawTranscription (biology)GeneticsAmino Acid SequenceMolecular BiologyGeneGeneticsClostridioides difficileGene Expression Regulation BacterialMolecular biologyRecombinant ProteinsAntisense RNAGenes BacterialGlucosyltransferasesRecombinant DNASequence AlignmentMolecular and General Genetics MGG
researchProduct

Delineation of the catalytic domain of Clostridium difficile toxin B-10463 to an enzymatically active N-terminal 467 amino acid fragment.

2006

Abstract In an attempt to directly approach the postulated toxic domain of Clostridium difficile 's TcdB-10463, eight subclones of different size and locations in the N-terminal third of the toxin were generated. Expression of these toxin fragments was checked in Western blots and the enzymatic activity of the expressed proteins was analyzed by glucosylating Ras related small GTP-binding proteins. Two polypeptides of 875 aa (TcdBc1–3) and 557 aa (TcdBc1-H) glucosylated their targets Rho, Rac and Cdc42 with the same activity and specificity as the holotoxin. In comparison 516 aa (TcdBc1-N) and 467 aa (TcdBc1-A) protein fragments exhibited highly reduced activity, while Tcdc1 and TcdB2–3 (aa …

Bacterial ToxinsMolecular Sequence DataClostridium difficile toxin Bmedicine.disease_causeMicrobiologyStructure-Activity RelationshipGTP-binding protein regulatorsClostridiumBacterial ProteinsGeneticsmedicineMolecular Biologychemistry.chemical_classificationBinding SitesbiologyBase SequenceToxinbiology.organism_classificationMolecular biologyPeptide FragmentsRecombinant ProteinsAmino acidEnzymechemistryCdc42 GTP-Binding ProteinBiochemistryGlucosyltransferasesbiology.proteinGlucosyltransferaseFEMS microbiology letters
researchProduct