0000000000076250

AUTHOR

Manfred Weidmann

0000-0002-7063-7491

A novel cytotoxin from Clostridium difficile serogroup F is a functional hybrid between two other large clostridial cytotoxins.

Abstract The large clostridial cytotoxins (LCTs) constitute a group of high molecular weight clostridial cytotoxins that inactivate cellular small GTP-binding proteins. We demonstrate that a novel LCT (TcdB-1470) from Clostridium difficile strain 1470 is a functional hybrid between “reference” TcdB-10463 andClostridium sordellii TcsL-1522. It bound to the same specific receptor as TcdB-10463 but glucosylated the same GTP-binding proteins as TcsL-1522. All three toxins had equal enzymatic potencies but were equally cytotoxic only when microinjected. When applied extracellularly TcdB-1470 and TcdB-10463 were considerably more potent cytotoxins than TcsL-1522. The small GTP-binding protein R-R…

research product

Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile.

To analyse the transcription pattern of the five tcdA-E genes of the pathogenicity locus (PaLoc) of Clostridium difficile a protocol was established to purify RNA from strain VPI10463. Transcription analysis of the five tcdA-E genes showed that they were all transcribed. In the early exponential phase, a high level of tcdC and low levels of tcdA,B,D,E transcripts were detectable; this was inverted in the stationary phase, suggesting that TcdC might have a negative influence on transcription of the other genes. Three transcription initiation sites, one for tcdA and two for tcdB were determined by primer extension analysis. Readthrough transcripts from outside the locus were not obtainable, s…

research product

Genetic rearrangements in the pathogenicity locus of Clostridium difficile strain 8864 – implications for transcription, expression and enzymatic activity of toxins A and B

The pathogenicity locus (PaLoc) of Clostridium difficile isolate 8864 was investigated to locate genetic rearrangements that would explain the exceptional pathogenicity of this particular isolate. Two major changes were defined: an insertion of 1.1 kb between the two genes tcdA and tcdE, coding for the enterotoxin and an accessory protein of unknown function, respectively, and a deletion of 5.9 kb encompassing the 3' ends of tcdA and tcdC. Transcription of the tcdA-E genes is severely affected by both rearrangements, explaining the demonstrated complete lack of TcdA polypeptide. We present a model of coordinate, growth-related transcription of the tcdA-E genes that confirms our previous fin…

research product

Delineation of the catalytic domain of Clostridium difficile toxin B-10463 to an enzymatically active N-terminal 467 amino acid fragment.

Abstract In an attempt to directly approach the postulated toxic domain of Clostridium difficile 's TcdB-10463, eight subclones of different size and locations in the N-terminal third of the toxin were generated. Expression of these toxin fragments was checked in Western blots and the enzymatic activity of the expressed proteins was analyzed by glucosylating Ras related small GTP-binding proteins. Two polypeptides of 875 aa (TcdBc1–3) and 557 aa (TcdBc1-H) glucosylated their targets Rho, Rac and Cdc42 with the same activity and specificity as the holotoxin. In comparison 516 aa (TcdBc1-N) and 467 aa (TcdBc1-A) protein fragments exhibited highly reduced activity, while Tcdc1 and TcdB2–3 (aa …

research product