0000000000076331

AUTHOR

Stefan H.p. Kraus

Cladribine exerts an immunomodulatory effect on human and murine dendritic cells

Cladribine is a purine nucleoside analog developed to treat lymphoid malignancies. Reported therapeutic benefits for the autoimmune disease multiple sclerosis indicate additional immunomodulatory effects beyond the well-characterized cytotoxic activity causing lymphopenia. Here, we demonstrate that cladribine reduces the secretion of inflammatory cytokines and chemokines by murine and human dendritic cells, the most potent antigen-presenting cells. This compound also modulates the expression of the activation markers CD86 and MHC II. Furthermore, cladribine affects the T cell priming capacity of dendritic cells, resulting in reduced induction of interferon-γ- and tumor necrosis factor-α-pro…

research product

FTY720 (fingolimod) treatment tips the balance towards less immunogenic antigen-presenting cells in patients with multiple sclerosis.

Objective: We aimed to clarify whether fingolimod has direct effects on antigen-presenting cells in multiple sclerosis patients. Methods: Frequency and phenotype of directly ex vivo dendritic cells and monocytes were analyzed in 43 individuals, including fingolimod-treated and untreated multiple sclerosis patients as well as healthy subjects. These cells were further stimulated with lipopolysaccharide to determine functional effects of fingolimod treatment. Results: Absolute numbers of CD1c+ dendritic cells and monocytes were not significantly reduced in fingolimod-treated patients indicating that fingolimod did not block the migration of antigen-presenting cells to peripheral blood. CD86 w…

research product

Modulation of dendritic cell properties by laquinimod as a mechanism for modulating multiple sclerosis.

Laquinimod is an orally administered compound that is under investigation in relapsing-remitting multiple sclerosis. To understand the mechanism by which laquinimod exerts its clinical effects, we have performed human and murine studies assessing its immunomodulatory properties. In experimental autoimmune encephalomyelitis, the therapeutic administration of laquinimod beginning during the recovery of SJL mice, prevented further relapses as expected and strongly reduced infiltration of CD4+ and CD8+ T cells in the central nervous system. We hypothesized that this beneficial effect was mediated by dendritic cells, since we and others found a modulation of different dendritic cell subsets unde…

research product

Laquinimod dampens IL-1β signaling and Th17-polarizing capacity of monocytes in patients with MS

ObjectiveTo assess the impact of laquinimod treatment on monocytes and to investigate the underlying immunomodulatory mechanisms in MS.MethodsIn this cross-sectional study, we performed in vivo and in vitro analyses of cluster of differentiation (CD14+) monocytes isolated from healthy donors (n = 15), untreated (n = 13), and laquinimod-treated patients with MS (n = 14). Their frequency and the expression of surface activation markers were assessed by flow cytometry and the viability by calcein staining. Cytokine concentrations in the supernatants of lipopolysaccharide (LPS)-stimulated monocytes were determined by flow cytometry. The messenger ribonucleic acid (mRNA) expression level of gene…

research product