0000000000076482

AUTHOR

José A. Gómez-tejedor

Biostable Scaffolds of Polyacrylate Polymers Implanted in the Articular Cartilage Induce Hyaline-Like Cartilage Regeneration in Rabbits

[EN] Purpose: To study the influence of scaffold properties on the organization of ¿in vivo¿ cartilage regeneration. Our hypothesis is that stress transmission to the cells seeded inside the scaffold pores or surrounding it, which is highly dependent on the scaffold properties, determine differentiation of both mesenchymal cells and dedifferentiated autologous chondrocytes. Methods: Four series of porous scaffolds made of different polyacrylate polymers, previously seeded with cultured rabbit chondrocytes or without cells preseeded, were implanted in cartilage defects in rabbits. Subchondral bone was always injured during the surgery in order to allow blood to reach the implantation site an…

research product

Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations

Purpose: Articular cartilage has limited repair capacity. Two different implant devices for articular cartilage regeneration were tested in vivo in a sheep model to evaluate the effect of subchondral bone anchoring for tissue repair. Methods: The implants were placed with press-fit technique in a cartilage defect after microfracture surgery in the femoral condyle of the knee joint of the sheep and histologic and mechanical evaluation was done 4.5 months later. The first group consisted of a biodegradable polycaprolactone (PCL) scaffold with double porosity. The second test group consisted of a PCL scaffold attached to a poly(L-lactic acid) (PLLA) pin anchored to the subchondral bone. Result…

research product