0000000000076536

AUTHOR

Valeriy Y. Ivanov

Effects of initialization on response of a fully-distributed hydrologic model

Summary Knowledge of initial conditions is very important to correctly model the basin response at the storm event scale. Of particular interest is the influence of topography and soil type on the principal hydrologic variables and runoff generation mechanisms as a function of antecedent wetness conditions. This study addresses the influence of initial states on the short-term hydrologic response and characterizes the effects of topography and soils on the dissipation of the influence of the initialization conditions. Two case studies are considered: a synthetic two-dimensional planar hillslope with various assumed slope magnitudes and soil types; and a real basin (∼800 km2) with actual lan…

research product

Stochastic assessment of climate impacts on hydrology and geomorphology of semiarid headwater basins using a physically based model

Hydrologic and geomorphic responses of watersheds to changes in climate are difficult to assess due to projection uncertainties and nonlinearity of the processes that are involved. Yet such assessments are increasingly needed and call for mechanistic approaches within a probabilistic framework. This study employs an integrated hydrology-geomorphology model, the Triangulated Irregular Network-based Real-time Integrated Basin Simulator (tRIBS)-Erosion, to analyze runoff and erosion sensitivity of seven semiarid headwater basins to projected climate conditions. The Advanced Weather Generator is used to produce two climate ensembles representative of the historic and future climate conditions f…

research product

tRIBS-Erosion: A parsimonious physically-based model for studying catchment hydro-geomorphic response

Our goal is to develop a model capable to discern the response of a watershed to different erosion mechanisms. We propose a framework that integrates a geomorphic component into the physically-based and spatially distributed TIN-based Real-time Integrated Basin Simulator (tRIBS) model. The coupled model simulates main erosive processes of hillslopes (raindrop impact detachment, overland flow entrainment, and diffusive processes) and channel (erosion and deposition due to the action of water flow). In addition to the spatially distributed, dynamic hydrologic variables, the model computes the sediment transport discharge and changes in elevation, which feedback to hydrological dynamics throug…

research product