Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis
The skeletal elements (spicules) of the demosponge Lubomirskia baicalensis were analyzed; they are composed of amorphous, non-crystalline silica, and contain in a central axial canal the axial filament which consists of the enzyme silicatein. The axial filament, that orients the spicule in its longitudinal axis exists also in the center of the spines which decorate the spicule. During growth of the sponge, new serially arranged modules which are formed from longitudinally arranged spicule bundles are added at the tip of the branches. X-ray analysis revealed that these serial modules are separated from each other by septate zones (annuli). We describe that the longitudinal bundles of spicule…
Influence of saline and pH on collagen type I fibrillogenesis in vitro: Fibril polymorphism and colloidal gold labelling
We have produced different collagen type I fibrils by in vitro fibrillogenesis of acetic acid-soluble collagen within the pH range 2.5-9.0, in the presence and absence of 150 mM NaCl. The varying relatively stable molecular assemblies and polymorphic fibrillar end-products produced after 24 h incubation have been assessed and compared by the TEM study of specimens negatively stained with uranyl acetate. In the presence of 150 mM NaCl, the assembly of collagen at low pH (2.5) leads to the formation of initial molecular aggregates that progressively link together at slightly higher pH (5.0) to form sub-fibrils and spindle-shaped D-banded bundles of sub-fibrils. At pH 6.0 these D-banded bundle…
VS2 nanotubes containing organic-amine templates from the NT-VOx precursors and reversible copper intercalation in NT-VS2.
Molybdenum blue: Binding to collagen fibres and microcrystal formation
Collagen fibres have been shown by transmission electron microscopy to progressively bind the polyoxomolybdate ring-complex, termed molybdenum blue. Nucleation of cuboidal molybdenum blue microcrystals occurs on the surface of the collagen fibres, leading eventually to extensive coating of the fibres with microcrystals.
Novel photoreception system in sponges?
Abstract Sponges (phylum Porifera) of the classes Hexactinellida and Demospongiae possess a skeleton composed of siliceous spicules, which are synthesized enzymatically. The longest spicules are found among the Hexactinellida, with the stalk spicules (length: 30 cm; diameter: 300 μm) of Hyalonema sieboldi as prominent examples. These spicules are constructed around a central axial filament, which is formed by approximately 40 siliceous layers. The stratified spicules function as optical glass fibers with unique properties. If free-spaced coupled with a white light source (WLS), the entire fiber is illuminated. Special features of the light transmission: (i) only wavelengths between 615 and …
VS2-Nanoröhren mit Amin-Templaten der VOx-Vorstufen und reversible Cu-Einlagerung in NT-VS2
Mineralization of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces.
There is a demand for novel bioactive supports in surgery, orthopedics, and tissue engineering. The availability of recombinant silica-synthesizing enzyme (silicatein) opens new possibilities for the synthesis of silica-containing bioactive surfaces under ambient conditions that do not damage biomolecules like proteins. Here it is shown that growth of human osteosarcoma SaOS-2 cells on cluster plates precoated with Type 1 collagen is not affected by additional coating of the plates with the recombinant silicatein and incubation with its enzymatic substrate, tetraethoxysilane (TEOS). However, the enzymatic modification of the plates by biosilica deposition on the protein-coated surface cause…