Global functional variation in alpine vegetation
International audience; Questions. What are the functional trade-offs of vascular plant species in global alpine ecosystems? How is functional variation related to vegetation zones, climatic groups and biogeographic realms? What is the relative contribution of macroclimate and evolutionary history in shaping the functional variation of alpine plant communities? Location. Global. Methods. We compiled a data set of alpine vegetation with 5,532 geo-referenced plots, 1,933 species and six plant functional traits. We used principal component analysis to quantify functional trade-offs among species and trait probability density to assess the functional dissimilarity of alpine vegetation in differ…
Fine-grain beta diversity in Palaearctic open vegetation: variability within and between biomes and vegetation types
Aims: To quantify how fine-grain (within-plot) beta diversity differs among biomes and vegetation types. Study area: Palaearctic biogeographic realm. Methods: We extracted 4,654 nested-plot series with at least four different grain sizes between 0.0001 m² and 1,024 m² from the GrassPlot database spanning broad geographic and ecological gradients. Next, we calculated the slope parameter (z-value) of the power-law species–area relationship (SAR) to use as a measure of multiplicative beta diversity. We did this separately for vascular plants, bryophytes and lichens and for the three groups combined (complete vegetation). We then tested whether z-values differed between biomes, ecological-physi…
Benchmarking plant diversity of Palaearctic grasslands and other open habitats
© 2021 The Authors.
Fine‐grain beta diversity of Palaearctic grassland vegetation
QUESTIONS: Which environmental factors influence fine-grain beta diversity of vegetation and do they vary among taxonomic groups? LOCATION: Palaearctic biogeographic realm. METHODS: We extracted 4,654 nested-plot series with at least four different grain sizes between 0.0001 m² and 1,024 m² from the GrassPlot database, covering a wide range of different grassland and other open habitat types. We derived extensive environmental and structural information for these series. For each series and four taxonomic groups (vascular plants, bryophytes, lichens, all), we calculated the slope parameter (z-value) of the power law species–area relationship (SAR), as a beta diversity measure. We tested whe…
Database Species-Area Relationships in Palaearctic Grasslands
The Database Species-Area Relationships in Palaearctic Grasslands (GIVD ID EU-00-003) is an initiative of the European Dry Grassland Group (EDGG) and primarily functions as repository for all data sampled during the EDGG Research Expeditions. During these expeditions two types of highly standardised sampling of dry grassland vegetation in the Palaearctic realm are carried out: (i) nested-plot sampling on squares of 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100 m2; (ii) additional normal releves of 10-m2 plots. For all plot sizes, the terricolous vascular plants, bryophytes, and lichens are recorded that are superficially present (shoot presence). Additionally, for all 10-m2 plots species cover i…
Global patterns and drivers of alpine plant species richness
B.J.-A. was funded by the Marie Curie Clarín-COFUND program of the Principality of Asturias-EU (ACB17-26) and the Spanish Research Agency (AEI/10.13039/501100011033).
sPlotOpen – An environmentally balanced, open‐access, global dataset of vegetation plots
Datos disponibles en https://github.com/fmsabatini/sPlotOpen_Code
Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands
Aim Species-area relationships (SARs) are fundamental scaling laws in ecology although their shape is still disputed. At larger areas, power laws best represent SARs. Yet, it remains unclear whether SARs follow other shapes at finer spatial grains in continuous vegetation. We asked which function describes SARs best at small grains and explored how sampling methodology or the environment influence SAR shape. Location Palaearctic grasslands and other non-forested habitats. Taxa Vascular plants, bryophytes and lichens. Methods We used the GrassPlot database, containing standardized vegetation-plot data from vascular plants, bryophytes and lichens spanning a wide range of grassland types throu…
GrassPlot – a database of multi-scale plant diversity in Palaearctic grasslands
GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (relevés) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001; ... 1,000 m²) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes a…
Plot - A new tool for global vegetation analyses
23Biodiversity Conservation Department, ISPRA – Italian National Institute for Environmental Protection and Research, Rome, Italy