0000000000076773

AUTHOR

Kristian Sahlstedt

Wastewater treatment plant design and operation under multiple conflicting objective functions

Wastewater treatment plant design and operation involve multiple objective functions, which are often in conflict with each other. Traditional optimization tools convert all objective functions to a single objective optimization problem (usually minimization of a total cost function by using weights for the objective functions), hiding the interdependencies between different objective functions. We present an interactive approach that is able to handle multiple objective functions simultaneously. As an illustration of our approach, we consider a case study of plant-wide operational optimization where we apply an interactive optimization tool. In this tool, a commercial wastewater treatment …

research product

Applying the approximation method PAINT and the interactive method NIMBUS to the multiobjective optimization of operating a wastewater treatment plant

Using an interactive multiobjective optimization method called NIMBUS and an approximation method called PAINT, preferable solutions to a five-objective problem of operating a wastewater treatment plant are found. The decision maker giving preference information is an expert in wastewater treatment plant design at the engineering company Pöyry Finland Ltd. The wastewater treatment problem is computationally expensive and requires running a simulator to evaluate the values of the objective functions. This often leads to problems with interactive methods as the decision maker may get frustrated while waiting for new solutions to be computed. Thus, a newly developed PAINT method is used to spe…

research product

Wastewater treatment: New insight provided by interactive multiobjective optimization

In this paper, we describe a new interactive tool developed for wastewater treatment plant design. The tool is aimed at supporting the designer in designing new wastewater treatment plants as well as optimizing the performance of already available plants. The idea is to utilize interactive multiobjective optimization which enables the designer to consider the design with respect to several conflicting evaluation criteria simultaneously. This is more important than ever because the requirements for wastewater treatment plants are getting tighter and tighter from both environmental and economical reasons. By combining a process simulator to simulate wastewater treatment and an interactive mul…

research product