Characterisation, analysis of expression and localisation of the opsin gene repertoire from the perspective of photoperiodism in the aphid Acyrthosiphon pisum
Organisms exhibit a wide range of seasonal responses as adaptions to predictable annual changes in their environment. These changes are originally caused by the effect of the Earth's cycles around the sun and its axial tilt. Examples of seasonal responses include floration, migration, reproduction and diapause. In temperate climate zones, the most robust variable to predict seasons is the length of the day (i.e. the photoperiod). The first step to trigger photoperiodic driven responses involves measuring the duration of the light-dark phases, but the molecular clockwork performing this task is poorly characterized. Photopigments such as opsins are known to participate in light perception, b…
Mapping and quantification of cryptochrome expression in the brain of the pea aphid Acyrthosiphon pisum.
Aphids are paradigmatic photoperiodic animals often used to study the role of the circadian clock in the seasonal response. Previously, we described some elements of the circadian clock core (genes period and timeless) and output (melatonin, AANATs and PTTH) that could have a role in the regulation of the aphid seasonal response. More recently we identified two opsins (C-ops and SWO4) as candidate input photoperiodic receptors. In the present report, we focus on the study of cryptochromes (cry) as photoreceptors of the circadian clock and discuss their involvement in the seasonal response. We analyze the expression of cry1 and cry2 genes in a circadian and seasonal context, and map their ex…
Melatonin in the seasonal response of the aphid Acyrthosiphon pisum.
Aphids display life cycles largely determined by the photoperiod. During the warm long-day seasons, most aphid species reproduce by viviparous parthenogenesis. The shortening of the photoperiod in autumn induces a switch to sexual reproduction. Males and sexual females mate to produce overwintering resistant eggs. In addition to this full life cycle (holocycle), there are anholocyclic lineages that do not respond to changes in photoperiod and reproduce continuously by parthenogenesis. The molecular or hormonal events that trigger the seasonal response (i.e., induction of the sexual phenotypes) are still unknown. Although circadian synthesis of melatonin is known to play a key role in verteb…
Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum.
Aphids are typical photoperiodic insects that switch from viviparous parthenogenetic reproduction typical of long day seasons to oviparous sexual reproduction triggered by the shortening of photoperiod in autumn yielding an overwintering egg in which an embryonic diapause takes place. While the involvement of the circadian clock genes in photoperiodism in mammals is well established, there is still some controversy on their participation in insects. The availability of the genome of the pea aphid Acyrthosiphon pisum places this species as an excellent model to investigate the involvement of the circadian system in the aphid seasonal response. In the present report, we have advanced in the c…
A new species of Rhopalosiphum (Hemiptera, Aphididae) on Chusquea tomentosa (Poaceae, Bambusoideae) from Costa Rica
copyright 2012, Los autores y Zookeys. Datos incluidos por Lisela Moreira Carmona, responsable de depósitos del área de Patógenos y Plagas de Plantas (CIBCM-UCR). The new species Rhopalosiphum chusqueae Pérez Hidalgo & Villalobos Muller, is described from apterous viviparous females caught on Chusquea tomentosa in Cerro de la Muerte (Costa Rica). The identity of the species is supported both by the morphological features and by a molecular phylogenetic analysis based on a fragment of the mitochondrial DNA containing the 5’ region of the cytochrome c oxidase 1 (COI) and on the nuclear gene coding for the Elongation factor-1 alpha (EF1α). The taxonomic position of the new species is discussed…
Identification, characterization and analysis of expression of genes encoding arylalkylamine N-acetyltransferases in the pea aphidAcyrthosiphon pisum
Most organisms exhibit some kind of rhythmicity in their behaviour and/or physiology as an adaptation to the cyclical movements of the Earth. In addition to circadian rhythms, many organisms have an annual rhythmicity in certain activities, such as reproduction, migration or induction of diapause. Current knowledge of the molecular basis controlling seasonal rhythmicity, especially in insects, is scarce. One element that seems to play an essential role in the maintenance of both circadian and seasonal rhythms in vertebrates is the hormone melatonin. In vertebrates, the limiting enzyme in its synthesis is the arylalkylamine N-acetyltransferase (AANAT). Melatonin is also present in insects bu…