0000000000077032
AUTHOR
S.d. Richter
On-line implementation and first operation of the Laser Ion Source and Trap at ISOLDE/CERN
13 pags.; 12 figs.; 2 tab.; Open Access funded by CERN
High efficiency resonance ionization of palladium with Ti:sapphire lasers
This work presents the development and testing of highly efficient excitation schemes for resonance ionization of palladium. To achieve the highest ionization efficiencies, a high-power, high repetition rate Ti:sapphire laser system was used and 2-step, 3-step and 4-step schemes were investigated and compared. Starting from different excited steps, the frequencies of the final ionization steps were tuned across the full accessible spectral range of the laser system, revealing several autoionizing Rydberg series, which converge towards the energetically higher lying state of the Pd+ ion ground state configuration. Through proper choice of these excitation steps, we developed a highly efficie…
Atom beam emersion from hot cavity laser ion sources
Abstract Ion sources exploiting laser resonance ionization offer efficient and element-selective radioactive ion beam production at the leading isotope separation on-line facilities worldwide. Most commonly, laser resonance ionization takes place inside a resistively heated atomizer tube directly coupled to the production target, where the element of interest is evaporated and provided as atomic vapor. While naturally the majority of atoms is ionized inside this hot cavity, a fraction of the neutrals effuses towards the high voltage beam extraction system of the subsequent mass separator. We report on several systematic investigations on this phenomenon regarding its significance and implic…
First application of the Laser Ion Source and Trap (LIST) for on-line experiments at ISOLDE
The Laser Ion Source and Trap (LIST) provides a new mode of operation for the resonance ionization laser ion source (RILIS) at ISOLDE/CERN, reducing the amount of surface-ionized isobaric contaminants by up to four orders of magnitude. After the first successful on-line test at ISOLDE in 2011 the LIST was further improved in terms of efficiency, selectivity, and reliability through several off-line tests at Mainz University and at ISOLDE. In September 2012, the first on-line physics experiments to use the LIST took place at ISOLDE. The measurements of the improved LIST indicate more than a twofold increase in efficiency compared to the LIST of the 2011 run. The suppression of surface-ionize…