0000000000077075

AUTHOR

V. I. Afonso

Mapping nonlinear gravity into General Relativity with nonlinear electrodynamics

We show that families of nonlinear gravity theories formulated in a metric-affine approach and coupled to a nonlinear theory of electrodynamics can be mapped into General Relativity (GR) coupled to another nonlinear theory of electrodynamics. This allows to generate solutions of the former from those of the latter using purely algebraic transformations. This correspondence is explicitly illustrated with the Eddington-inspired Born-Infeld theory of gravity, for which we consider a family of nonlinear electrodynamics and show that, under the map, preserve their algebraic structure. For the particular case of Maxwell electrodynamics coupled to Born-Infeld gravity we find, via this corresponden…

research product

Correspondence between modified gravity and general relativity with scalar fields

We describe a novel procedure to map the field equations of nonlinear Ricci-based metric-affine theories of gravity, coupled to scalar matter described by a given Lagrangian, into the field equations of General Relativity coupled to a different scalar field Lagrangian. Our analysis considers examples with a single and $N$ real scalar fields, described either by canonical Lagrangians or by generalized functions of the kinetic and potential terms. In particular, we consider several explicit examples involving $f(R)$ theories and the Eddington-inspired Born-Infeld gravity model, coupled to different scalar field Lagrangians. We show how the nonlinearities of the gravitational sector of these t…

research product

Mapping Ricci-based theories of gravity into general relativity

We show that the space of solutions of a wide family of Ricci-based metric-affine theories of gravity can be put into correspondence with the space of solutions of general relativity (GR). This allows us to use well-established methods and results from GR to explore new gravitational physics beyond it.

research product

New scalar compact objects in Ricci-based gravity theories

Taking advantage of a previously developed method, which allows to map solutions of General Relativity into a broad family of theories of gravity based on the Ricci tensor (Ricci-based gravities), we find new exact analytical scalar field solutions by mapping the free-field static, spherically symmetric solution of General Relativity (GR) into quadratic $f(R)$ gravity and the Eddington-inspired Born-Infeld gravity. The obtained solutions have some distinctive feature below the would-be Schwarzschild radius of a configuration with the same mass, though in this case no horizon is present. The compact objects found include wormholes, compact balls, shells of energy with no interior, and a new …

research product