0000000000077184

AUTHOR

Lucas Grulich

Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft

Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain …

research product

Aerosol concentrations determine the height of warm rain and ice initiation in convective clouds over the Amazon basin

Abstract. We have investigated how pollution aerosols affect the height above cloud base of rain and ice hydrometeor initiation and the subsequent vertical evolution of cloud droplet size and number concentrations in growing convective cumulus. For this purpose we used in-situ data of hydrometeor size distributions measured with instruments mounted on HALO (High Altitude and Long Range Research Aircraft) during the ACRIDICON-CHUVA campaign over the Amazon during September 2014. The results show that the height of rain initiation by collision and coalescence processes (Dr, in units of meters above cloud base) is linearly correlated with the number concentration of droplets (Nd in cm−3) nucle…

research product

Automatic shape detection of ice crystals

Abstract Clouds have a crucial impact on the energy balance of the Earth-Atmosphere system. They can cool the system by partly reflecting or scattering of the incoming solar radiation (albedo effect); moreover, thermal radiation as emitted from the Earth's surface can be absorbed and partly re-emitted by clouds leading to a warming of the atmosphere (greenhouse effect). The effectiveness of both effects crucially depends on the size and the shape of a cloud's particulate constituents, i.e. liquid water droplets or solid ice crystals. For studying cloud microphysics, in situ measurements on board of aircraft are commonly used. An important class of measurement techniques comprises optical ar…

research product

Further evidence for CCN aerosol concentrations determining the height of warm rain and ice initiation in convective clouds over the Amazon basin

We have investigated how aerosols affect the height above cloud base of rain and ice hydrometeor initiation and the subsequent vertical evolution of cloud droplet size and number concentrations in growing convective cumulus. For this purpose we used in situ data of hydrometeor size distributions measured with instruments mounted on HALO aircraft during the ACRIDICON–CHUVA campaign over the Amazon during September 2014. The results show that the height of rain initiation by collision and coalescence processes (Dr, in units of meters above cloud base) is linearly correlated with the number concentration of droplets (Nd in cm−3) nucleated at cloud base (Dr ≈ 5 ⋅ Nd). Additional cloud processes…

research product