0000000000077192

AUTHOR

Roberta Cirincione

Improved Bone Regeneration Using Biodegradable Polybutylene Succinate Artificial Scaffold in a Rabbit Model

The treatment of extensive bone loss represents a great challenge for orthopaedic and reconstructive surgery. Most of the time, those treatments consist of multiple-stage surgeries over a prolonged period, pose significant infectious risks and carry the possibility of rejection. In this study, we investigated if the use of a polybutylene succinate (PBS) micro-fibrillar scaffold may improve bone regeneration in these procedures. In an in vivo rabbit model, the healing of two calvarial bone defects was studied. One defect was left to heal spontaneously while the other was treated with a PBS scaffold. Computed tomography (CT) scans, histological and immunohistochemical analyses were performed …

research product

Polybutylene succinate artificial scaffold for peripheral nerve regeneration

Regeneration and recovery of nerve tissues are a great challenge for medicine, and positively affect the quality of life of patients. The development of tissue engineering offers a new approach to the problem with the creation of multifunctional artificial scaffolds that act on various levels in the damaged tissue, providing physical and biochemical support for the growth of nerve cells. In this study, the effects of the use of a tubular scaffold made of polybutylene succinate (PBS), surgically positioned at the level of a sciatic nerve injured in rat, between the proximal stump and the distal one, was investigated. Scaffolds characterization was carried out by scanning electron microscopy …

research product