0000000000077378

AUTHOR

Kanchan P. Khemchandani

Solution to Faddeev equations with two-body experimental amplitudes as input and application to J^P=1/2^+, S=0 baryon resonances

We solve the Faddeev equations for the two meson-one baryon system pi pi N and coupled channels using the experimental two-body t matrices for the pi N interaction as input and unitary chiral dynamics to describe the interaction between the rest of coupled channels. In addition to the N-*(1710) obtained before with the pi pi N channel, we obtain, for J(pi)=1/2(+) and total isospin of the three-body system I=1/2, a resonance peak whose mass is around 2080 MeV and width 54 MeV, while for I=3/2 we find a peak around 2126 with 42 MeV of width. These two resonances can be identified with the N-*(2100) and the Delta(1910), respectively. We obtain another peak in the isospin 1/2 configuration, aro…

research product

The role of f(0)(1710) in the phi omega threshold peak of J/Psi -> gamma phi omega

We study the process J/Psi -> gamma phi omega, measured by the BES experiment, where a neat peak close to the phi omega threshold is observed and is associated to a scalar meson resonance around 1800 MeV. We make the observation that a scalar resonance coupling to phi omega unavoidably couples strongly to K (K) over bar, but no trace of a peak is seen in the K (K) over bar spectrum of the J/Psi -> gamma K (K) over bar at this energy. This serves us to rule out the interpretation of the observed peak as a signal of a new resonance. After this is done, a thorough study is performed on the production of a pair of vector mesons and how its interaction leads necessarily to a peak in the J/Psi ->…

research product

Study of thepd→pdηreaction

A study of the pd{yields}pd{eta} reaction in the energy range where the recent data from Uppsala are available is done in the two-step model of {eta} production including the final state interaction. The {eta}-d final state interaction is incorporated through the solution of the Lippmann Schwinger equation using an elastic scattering matrix element, T{sub {eta}}{sub d{yields}}{sub {eta}}{sub d}, which is required to be half off-shell. It is written in a factorized form, with an off-shell form factor multiplying an on-shell part given by an effective range expansion up to the fourth power in momentum. The parameters of this expansion have been taken from an existing recent relativistic Fadde…

research product