0000000000077517

AUTHOR

Nicolas Mercier

Flexible vs Rigid Networks of Two Isoreticular Viologen-Carboxylate based PCPs: the Ligand Size Effect

International audience

research product

Porous Coordination Polymer Based on Bipyridinium Carboxylate Linkers with High and Reversible Ammonia Uptake

The zwitterionic bipyridinium carboxylate ligand 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium (pc1) in the presence of cadmium chloride affords novel porous coordination polymers (PCPs): [Cd4(pc1)3Cl6]·CdCl4·guest (1) crystallizing in the P3̅1c space group. In the structure, [Cd4Cl6(CO2)6] building units are linked together by six pc1 ligands, leading to a 3D high-symmetrical network exhibiting hexagonal channels along the c axis. The walls of this PCP consist of cationic electron-acceptor bipyridinium units. The PCP 1 reversibly adsorbs H2O and CH3OH up to about 0.1 g/g at saturation showing the adsorption isotherms characteristic of a moderately hydrophilic sorbent. Adsorption of ammonia (…

research product

A robust viologen and Mn-based porous coordination polymer with two types of Lewis acid sites providing high affinity for H 2 O, CO 2 and NH 3

A novel porous coordination polymer [Mn(pc3)(H2O)2]·xH2O (3 < x < 4) is synthesized in water at pH = 7 using the anionic viologen-carboxylate ligand 4,4′-bipyridinium,1,1′-bis-(2,4-dicarboxyphenyl) (pc32−). Dehydration of the material results in the formation of open pores containing two types of accessible Lewis acid sites: exposed Mn2+ cations and N+ atoms of viologen units. Due to this property the PCP shows high affinity and capacity in the adsorption of H2O, CO2 and NH3. Despite the presence of strong adsorption sites this material is stable in liquid water and in gaseous NH3.

research product

Insight into the Mechanism of Water Adsorption/Desorption in Hydrophilic Viologen-Carboxylate Based PCP

A water stable and highly hydrophilic porous coordination polymer based on viologen-carboxylate type ligand, the 4,4′-bipyridinium,1,1-bis(3-carboxyphenyl) (pc2), is obtained by the solvothermal method: [Cd3(pc2) (BTC)2(H2O)2]·6H2O ([1(H2O)2]·6H2O; BTC3– = 1,3,5-carboxybenzene). Its crystal structure and the ones of two partially dehydrated phases have been determined, allowing insight into the mechanism of water adsorption/desorption of this PCP material. It is shown that the dehydrated compound [1] first adsorbs two water molecules which fill the pores, leading to [1]·2H2O. On the other hand, the partial dehydration of the as-synthesized compound leads to the intermediate phase [1(H2O)]·3…

research product

Photo- and Thermochromic and Adsorption Properties of Porous Coordination Polymers Based on Bipyridinium Carboxylate Ligands

The zwitterionic bipyridinium carboxylate ligand 1-(4-carboxyphenyl)-4,4'-bipyridinium (hpc1) in the presence of 1,4-benzenedicarboxylate anions (BDC(2-)) and Zn(2+) ions affords three porous coordination polymers (PCPs): [Zn5(hpc1)2(BDC)4(HCO2)2]·2DMF·EtOH·H2O (1), [Zn3(hpc1)(BDC)2(HCO2)(OH)(H2O)]·DMF·EtOH·H2O (2), and [Zn10(hpc1)4(BDC)7(HCO2)2(OH)4(EtOH)2]·3DMF·3H2O (3), with the formate anions resulting from the in situ decomposition of dimethylformamide (DMF) solvent molecules. 1 and 3 are photo- and thermochromic, turning dark green as a result of the formation of bipyridinium radicals, as shown by electron paramagnetic resonance measurements. Particularly, crystals of 3 are very photo…

research product

CCDC 1061553: Experimental Crystal Structure Determination

Related Article: Oksana Toma, Nicolas Mercier, Magali Allain, Abdel Adi Kassiba, Jean-Pierre Bellat, Guy Weber, and Igor Bezverkhyy|2015|Inorg.Chem.|54|8923|doi:10.1021/acs.inorgchem.5b00975

research product

CCDC 1534485: Experimental Crystal Structure Determination

Related Article: Maxime Leroux, Nicolas Mercier, Jean-Pierre Bellat, Guy Weber, Igor Bezverkhyy|2017|Cryst.Growth Des.|17|2828|doi:10.1021/acs.cgd.7b00279

research product

CCDC 1061554: Experimental Crystal Structure Determination

Related Article: Oksana Toma, Nicolas Mercier, Magali Allain, Abdel Adi Kassiba, Jean-Pierre Bellat, Guy Weber, and Igor Bezverkhyy|2015|Inorg.Chem.|54|8923|doi:10.1021/acs.inorgchem.5b00975

research product

CCDC 1061551: Experimental Crystal Structure Determination

Related Article: Oksana Toma, Nicolas Mercier, Magali Allain, Abdel Adi Kassiba, Jean-Pierre Bellat, Guy Weber, and Igor Bezverkhyy|2015|Inorg.Chem.|54|8923|doi:10.1021/acs.inorgchem.5b00975

research product

CCDC 1061552: Experimental Crystal Structure Determination

Related Article: Oksana Toma, Nicolas Mercier, Magali Allain, Abdel Adi Kassiba, Jean-Pierre Bellat, Guy Weber, and Igor Bezverkhyy|2015|Inorg.Chem.|54|8923|doi:10.1021/acs.inorgchem.5b00975

research product

CCDC 1534001: Experimental Crystal Structure Determination

Related Article: Maxime Leroux, Nicolas Mercier, Jean-Pierre Bellat, Guy Weber, Igor Bezverkhyy|2017|Cryst.Growth Des.|17|2828|doi:10.1021/acs.cgd.7b00279

research product

CCDC 1571877: Experimental Crystal Structure Determination

Related Article: Antonin Leblanc, Nicolas Mercier, Magali Allain, Marie-Claire Dul, Guy Weber, Nicolas Geoffroy, Jean-Pierre Bellat, Igor Bezverkhyy|2017|Dalton Trans.|46|15666|doi:10.1039/C7DT03541A

research product

CCDC 1473082: Experimental Crystal Structure Determination

Related Article: Maxime Leroux, Nicolas Mercier, Magali Allain, Marie-Claire Dul, Jens Dittmer, Abdel Hadi Kassiba, Jean-Pierre Bellat, Guy Weber, and Igor Bezverkhyy|2016|Inorg.Chem.|55|8587|doi:10.1021/acs.inorgchem.6b01119

research product

CCDC 1534483: Experimental Crystal Structure Determination

Related Article: Maxime Leroux, Nicolas Mercier, Jean-Pierre Bellat, Guy Weber, Igor Bezverkhyy|2017|Cryst.Growth Des.|17|2828|doi:10.1021/acs.cgd.7b00279

research product