0000000000077568
AUTHOR
Rut Sanchis
Total oxidation of VOCs on mesoporous iron oxide catalysts: Soft chemistry route versus hard template method
9 figures, 3 tables.-- Supplemantary information available
Insights into the catalytic production of hydrogen from propane in the presence of oxygen: Cooperative presence of vanadium and gold catalysts
7 figures.-- © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
The key role of nanocasting in gold-based Fe2 O3 nanocasted catalysts for oxygen activation at the metal-support interface
5 Tablas.- 10 Figuras.- This is the peer reviewed version of the following article: The key role of nanocasting in gold‐based Fe2O3 nanocasted catalysts for oxygen activation at the metal‐support interface, ChemCatChem 11: 1915-1927 (2019), which has been published in final form at http://dx.doi.org/10.1002/cctc.201900210. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Size-activity relationship of iridium particles supported on silica for the total oxidation of volatile organic compounds (VOCs)
12 Figures, 2 Tables.-- Datos suplementarios disponibles en línea en la página web del editor.-- © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Low temperature conversion of levulinic acid into γ-valerolactone using Zn to generate hydrogen from water and nickel catalysts supported on sepiolite
1 scheme, 2 tables, 7 figures.-- Supplementary material available.
Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane
Abstract A set of vanadium phosphorous oxide (VPO) catalysts, mainly consisting of (VO) 2 P 2 O 7 , VO(PO 3 ) 2 or VOPO 4 ·2H 2 O bulk crystalline phases, has been investigated for the oxidative dehydrogenation (ODH) of ethane to ethylene, a key potential reaction for a sustainable industrial and socioeconomic development. The catalytic performance on these VPO catalysts has been explained on the basis of the main crystalline phases and the corresponding surface features found by XPS and LEISS at 400 °C, i.e. within the temperature range used for ODH reaction. The catalysts based on (VO) 2 P 2 O 7 phase presented the highest catalytic activity and productivity to ethylene. Nevertheless, the…
Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane
[EN] We report on the effect of NiO-support interactions on the chemical nature of Ni species in a series of supported NiO catalysts for the ODH of ethane. SiO2, TiO2-anatase, a high surface area TiO2 and a porous clay hetero-structure (PCH) with TiO2 and SiO2 pillars were used as supports, which led to a selectivity to ethylene in the range 30-90% over supported NiO catalysts. The catalysts were characterized by means of XRD, N-2-Adsorption, H-2-TPR, XPS and in situ (under H-2 reductive atmosphere) and ex situ XAS spectroscopy. The catalytic performance of supported materials is discussed in terms of their reducibility and specific reduction kinetics, but also taking into account the speci…
The promoter effect of Nb species on the catalytic performance of Ir-based catalysts for VOCs total oxidation
12 figures, 2 tables.-- Supporting information available.
Eco-friendly cavity-containing iron oxides prepared by mild routes as very efficient catalysts for the total oxidation of VOCs
Iron oxides (FeOx) are non-toxic, non-expensive and environmentally friendly compounds, which makes them good candidates for many industrial applications, among them catalysis. In the present article five catalysts based on FeOx were synthesized by mild routes: hydrothermal in subcritical and supercritical conditions (Fe-HT, Few200, Few450) and solvothermal (Fe-ST1 and Fe-ST2). The catalytic activity of these catalysts was studied for the total oxidation of toluene using very demanding conditions with high space velocities and including water and CO2 in the feed. The samples were characterized by X-ray diffraction (XRD), scanning and high-resolution transmission electron microscopy (SEM and…
Easy Method for the Transformation of Levulinic Acid into Gamma-Valerolactone Using a Nickel Catalyst Derived from Nanocasted Nickel Oxide
Different nickel catalysts have been tested for the transformation of levulinic acid into &gamma
Porous clays heterostructures as supports of iron oxide for environmental catalysis
[EN] Porous Clays Heterostructures (PCH) from natural pillared clays (bentonite with a high proportion of montmorillonite) have been used as supports of iron oxide for two reactions of environmental interest: i) the elimination of toluene (a representative compound of one of the most toxic subsets of volatile organic compounds, aromatics) by total oxidation and ii) the selective oxidation of H2S to elemental sulfur. For both reactions these catalysts have resulted to be remarkably more efficient than similar catalysts prepared using conventional silica as a support. Thus, in the total oxidation of toluene it has been observed that the catalytic activity obtained using siliceous PCH is two o…
Highly Active Co3O4-Based Catalysts for Total Oxidation of Light C1–C3 Alkanes Prepared by a Simple Soft Chemistry Method: Effect of the Heat-Treatment Temperature and Mixture of Alkanes
9 figures, 2 tables.
Green synthesis of cavity-containing manganese oxides with superior catalytic performance in toluene oxidation
10 Figuras.- 2 Tablas.- Datos suplementarios disponibles en línea en la página web del editor.-- © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Low temperature total oxidation of toluene by bimetallic Au–Ir catalysts
9 Figuras.- 3 Tablas.- Información suplementaria disponible en la página web del editor
Ferric sludge derived from the process of water purification as an efficient catalyst and/or support for the removal of volatile organic compounds
Ferric chloride solutions are used as coagulants or flocculants in water treatment operations for human consumption. This treatment produces large amounts of clay-type solids formed mainly of montmorillonite with iron oxides and humic substances. This ferric sludge can be used as an efficient catalyst for the removal of volatile organic compounds (VOCs) by total oxidation. This waste isolated in the purification process has been activated by calcinations in air, characterized by several physicochemical techniques and employed as a catalyst for the removal by total oxidation of representative VOCs: toluene, propane and mixtures of toluene/propane with or without water. This ferric sludge has…
Implementación del método del caso en la asignatura de Ingeniería de Procesos y Productos II del grado en Ingeniería Química
[EN] In this work, the case method has been used in the subject Process and Product Engineering II, which belongs to the fourth course of the Chemical Engineering Degree of the Universitat de València. Different cases have been proposed in the classroom practices in order to students acquire the competences of the subject and improve the results of the exam. A rubric was designed to evaluate the cases which was accessible to the students. The cases were proposed in the exam, in particular, cases related to four lessons which are usually complicated to students and the results obtained for these cases were compared with the results obtained in the questions (presented in a theoretical way) o…
"Partial oxidation of methane and methanol on FeOx-, MoOx- and FeMoOx -SiO2 catalysts prepared by sol-gel method: a comparative study"
[EN] FeOx-, MoOx and FeMoOx-SiO2 materials prepared by a sol-gel procedure have been evaluated as catalysts for the partial oxidation of methane and methanol. The effect of decreasing the pH of the synthesis gel on the chemical nature of FeOx and MoOx species has been investigated. Characterization results show that low pH improves the dispersion of metal oxide species present in SiO2 matrix. For FeOx/SiO2 materials, the presence of dispersed FeOx species (rather than bulk Fe2O3) improves the selectivity to formaldehyde in the partial oxidation of methane and methanol. For FeMoOx/SiOx catalysts, dispersed species favor the selectivity to formaldehyde only for methane oxidation. In contrast,…
Oxidative dehydrogenation of ethane on diluted or promoted nickel oxide catalysts: Influence of the promoter/diluter
Ti- and Nb- containing NiO catalysts have been synthesized by two different preparation methods: i) by precipitation (Me-Ni-O oxides, Me = Nb or Ti), in order to prepare promoted NiO catalysts; and ii) by wet impregnation on TiO or NbO supports, in order to prepare diluted/supported NiO catalysts. The catalysts have been also characterized and tested in the oxidative dehydrogenation of ethane. The catalytic performance of Ti- and Nb-promoted catalysts strongly depends on the composition, although in both cases the optimal one is found at similar Ti or Nb loadings (ca. 90 wt% NiO), showing similar ethylene selectivity in the ODH of ethane (ca. 90% at 10–20% ethane conversion). However, in th…
NiO diluted in high surface area TiO2 as efficient catalysts for the oxidative dehydrogenation of ethane
[EN] Catalysts consisting of NiO diluted in high surface area TiO2 can be as efficient in the oxidative dehydrogenation of ethane as the most selective NiO-promoted catalysts reported previously in the literature. By selecting the titania matrix and the NiO loading, yields to ethylene over 40% have been obtained. In the present article, three different titanium oxides (TiO2) have been employed as supports or diluters of nickel oxide and have been tested in the oxidative dehydrogenation of ethane to ethylene. All TiO2 used present anatase as the main crystalline phase and different surface areas of 11,55 and 85 m(2) g(-1). It has been observed that by selecting an appropriate nickel loading …