0000000000077582

AUTHOR

Agnese Kocere

Enhanced Permeability and Retention-like Extravasation of Nanoparticles from the Vasculature into Tuberculosis Granulomas in Zebrafish and Mouse Models

The enhanced permeability and retention (EPR) effect is the only described mechanism enabling nanoparticles (NPs) flowing in blood to reach tumors by a passive targeting mechanism. Here, using the transparent zebrafish model infected with Mycobacterium marinum we show that an EPR-like process also occurs allowing different types of NPs to extravasate from the vasculature to reach granulomas that assemble during tuberculosis (TB) infection. PEGylated liposomes and other NP types cross endothelial barriers near infection sites within minutes after injection and accumulate close to granulomas. Although similar to 100 and 190 nm NPs concentrated most in granulomas, even similar to 700 nm liposo…

research product

Zebrafish Embryos Allow Prediction of Nanoparticle Circulation Times in Mice and Facilitate Quantification of Nanoparticle–Cell Interactions

The zebrafish embryo is a vertebrate well suited for visualizing nanoparticles at high resolution in live animals. Its optical transparency and genetic versatility allow noninvasive, real-time observations of vascular flow of nanoparticles and their interactions with cells throughout the body. As a consequence, this system enables the acquisition of quantitative data that are difficult to obtain in rodents. Until now, a few studies using the zebrafish model have only described semiquantitative results on key nanoparticle parameters. Here, a MACRO dedicated to automated quantitative methods is described for analyzing important parameters of nanoparticle behavior, such as circulation time and…

research product