0000000000077616
AUTHOR
Luca Magazzù
Stabilization of quantum metastable states by dissipation
Normally, quantum fluctuations enhance the escape from metastable states in the presence of dissipation. Here we show that dissipation can enhance the stability of a quantum metastable system, consisting of a particle moving in a strongly asymmetric double well potential, interacting with a thermal bath. We find that the escape time from the metastable state has a nonmonotonic behavior versus the system-bath coupling and the temperature, producing a stabilizing effect.
Detector's quantum backaction effects on a mesoscopic conductor and fluctuation-dissipation relation
When measuring quantum mechanical properties of charge transport in mesoscopic conductors, backaction effects occur. We consider a measurement setup with an elementary quantum circuit, composed of an inductance and a capacitor, as detector of the current flowing in a nearby quantum point contact. A quantum Langevin equation for the detector variable including backaction effects is derived. Differences with the quantum Langevin equation obtained in linear response are pointed out. In this last case, a relation between fluctuations and dissipation is obtained, provided that an effective temperature of the quantum point contact is defined.
Nonlinear relaxation phenomena in metastable condensed matter systems
Nonlinear relaxation phenomena in three different systems of condensed matter are investigated. (i) First, the phase dynamics in Josephson junctions is analyzed. Specifically, a superconductor-graphene-superconductor (SGS) system exhibits quantum metastable states, and the average escape time from these metastable states in the presence of Gaussian and correlated fluctuations is calculated, accounting for variations in the the noise source intensity and the bias frequency. Moreover, the transient dynamics of a long-overlap Josephson junction (JJ) subject to thermal fluctuations and non-Gaussian noise sources is investigated. Noise induced phenomena are observed, such as the noise enhanced s…
Quantum resonant activation
Quantum resonant activation is investigated for the archetype setup of an externally driven two-state (spin-boson) system subjected to strong dissipation by means of both analytical and extensive numerical calculations. The phenomenon of resonant activation emerges in the presence of either randomly fluctuating or deterministic periodically varying driving fields. Addressing the incoherent regime, a characteristic minimum emerges in the mean first passage time to reach an absorbing neighboring state whenever the intrinsic time scale of the modulation matches the characteristic time scale of the system dynamics. For the case of deterministic periodic driving, the first passage time probabili…
TRANSIENT DYNAMICS AND ASYMPTOTIC POPULATIONS IN A DRIVEN METASTABLE QUANTUM SYSTEM
The transient dynamics of a periodically driven metastable quantum system, interacting with a heat bath, is investigated. The time evolution of the populations, within the framework of the Feynman–Vernon influ- ence functional and in the discrete variable representation, is analyzed by varying the parameters of the external driving. The results display strong non-monotonic behaviour of the populations with respect to the driving frequency.
Dissipative dynamics in a quantum bistable system: Crossover from weak to strong damping
The dissipative dynamics of a quantum bistable system coupled to a Ohmic heat bath is investigated beyond the spin-boson approximation. Within the path-integral approach to quantum dissipation, we propose an approximation scheme which exploits the separation of time scales between intra- and interwell (tunneling) dynamics. The resulting generalized master equation for the populations in a space localized basis enables us to investigate a wide range of temperatures and system-environment coupling strengths. A phase diagram in the coupling-temperature space is provided to give a comprehensive account of the different dynamical regimes.
Multi-State Quantum Dissipative Dynamics in Sub-Ohmic Environment: The Strong Coupling Regime
We study the dissipative quantum dynamics and the asymptotic behavior of a particle in a bistable potential interacting with a sub-Ohmic broadband environment. The reduced dynamics, in the intermediate to strong dissipation regime, is obtained beyond the two-level system approximation by using a real-time path integral approach. We find a crossover dynamic regime with damped intra-well oscillations and incoherent tunneling and a completely incoherent regime at strong damping. Moreover, a nonmonotonic behavior of the left/right well population difference is found as a function of the damping strength.
Quantum dissipative dynamics of a bistable system in the sub-Ohmic to super-Ohmic regime
We investigate the quantum dynamics of a multilevel bistable system coupled to a bosonic heat bath beyond the perturbative regime. We consider different spectral densities of the bath, in the transition from sub-Ohmic to super-Ohmic dissipation, and different cutoff frequencies. The study is carried out by using the real-time path integral approach of the Feynman-Vernon influence functional. We find that, in the crossover dynamical regime characterized by damped \emph{intrawell} oscillations and incoherent tunneling, the short time behavior and the time scales of the relaxation starting from a nonequilibrium initial condition depend nontrivially on the spectral properties of the heat bath.