0000000000077665
AUTHOR
Yu Xia
Sox17 regulates liver lipid metabolism and adaptation to fasting.
Liver is a major regulator of lipid metabolism and adaptation to fasting, a process involving PPARalpha activation. We recently showed that the Vnn1 gene is a PPARalpha target gene in liver and that release of the Vanin-1 pantetheinase in serum is a biomarker of PPARalpha activation. Here we set up a screen to identify new regulators of adaptation to fasting using the serum Vanin-1 as a marker of PPARalpha activation. Mutagenized mice were screened for low serum Vanin-1 expression. Functional interactions with PPARalpha were investigated by combining transcriptomic, biochemical and metabolic approaches. We characterized a new mutant mouse in which hepatic and serum expression of Vanin-1 is …
Theoretical Elucidation of β-O-4 Bond Cleavage of Lignin Model Compound Promoted by Sulfonic Acid-Functionalized Ionic Liquid
While the depolymerization of lignin to chemicals catalyzed by ionic liquids has attracted significant attention, the relevant molecular mechanism, especially the cleavage of specific bonds related to efficient depolymerization, still needs to be deeply understood for the complexity of this natural aromatic polymer. This work presents a detailed understanding of the cleavage of the most abundant β-O-4 bond in the model system, guaiacylglycerol β-guaiacyl ether, by a Brønsted acidic IL (1-methyl-3-(propyl-3-sulfonate) imidazolium bisulfate ([C3SO3Hmim][HSO4]) using density functional theory calculation and molecular dynamics simulation. It has been found that [C3SO3Hmim][HSO4] generates zwit…
Better Actuation Through Chemistry: Using Surface Coatings to Create Uniform Director Fields in Nematic Liquid Crystal Elastomers.
Controlling the molecular alignment of liquid crystal monomers (LCMs) within nano- and microstructures is essential in manipulating the actuation behavior of nematic liquid crystal elastomers (NLCEs). Here, we study how to induce uniformly vertical alignment of nematic LCMs within a micropillar array to maximize the macroscopic shape change using surface chemistry. Landau-de Gennes numerical modeling suggests that it is difficult to perfectly align LCMs vertically in every pore within a poly(dimethylsiloxane) (PDMS) mold with porous channels during soft lithography. In an untreated PDMS mold that provides homeotropic anchoring of LCMs, a radially escaped configuration of LCMs is observed. V…