0000000000077709

AUTHOR

Fergal J. O'brien

0000-0003-2030-8005

The pre-vascularisation of a collagen-chondroitin sulphate scaffold using human amniotic fluid-derived stem cells to enhance and stabilise endothelial cell-mediated vessel formation

Abstract A major problem in tissue engineering (TE) is graft failure in vivo due to core degradation in in vitro engineered constructs designed to regenerate thick tissues such as bone. The integration of constructs post-implantation relies on the rapid formation of functional vasculature. A recent approach to overcome core degradation focuses on the creation of cell-based, pre-engineered vasculature formed within the TE construct in vitro , prior to implantation in vivo . The primary objective of this study was to investigate whether an amniotic fluid-derived stem cell (AFSC)–human umbilical vein endothelial cell (HUVEC) co-culture could be used to engineer in vitro vasculature in a collag…

research product

The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold

Today, chronic respiratory disease is one of the leading causes of mortality globally. Epithelial dysfunction can play a central role in its pathophysiology. The development of physiologically-representative in vitro model systems using tissue-engineered constructs might improve our understanding of epithelial tissue and disease. This study sought to engineer a bilayered collagen-hyaluronate (CHyA-B) scaffold for the development of a physiologically-representative 3D in vitro tracheobronchial epithelial co-culture model. CHyA-B scaffolds were fabricated by integrating a thin film top-layer into a porous sub-layer with lyophilisation. The film layer firmly connected to the sub-layer with del…

research product