0000000000079417

AUTHOR

Maria Langbecker

Rydberg excitation of cold atoms inside a hollow core fiber

We report on a versatile, highly controllable hybrid cold Rydberg atom fiber interface, based on laser cooled atoms transported into a hollow core Kagom\'{e} crystal fiber. Our experiments are the first to demonstrate the feasibility of exciting cold Rydberg atoms inside a hollow core fiber and we study the influence of the fiber on Rydberg electromagnetically induced transparency (EIT) signals. Using a temporally resolved detection method to distinguish between excitation and loss, we observe two different regimes of the Rydberg excitations: one EIT regime and one regime dominated by atom loss. These results are a substantial advancement towards future use of our system for quantum simulat…

research product

Towards nonlinear optics with cold Rydberg atoms inside a hollow core fiber

We present an experimental setup for studying strongly nonlinear light-matter interactions using cold atoms inside a hollow core fiber. A Rydberg EIT process can potentially be used to generate strong and tunable effective photon-photon interactions.

research product

Micro lensing induced lineshapes in a single mode cold-atom hollow-core fiber interface

We report on the observation of strong transmission line shape alterations in a cold-atom-hollow-core-fiber interface. We show that this can lead to a significant overestimation of the assigned resonant optical depth for high atom densities. By modeling light beam propagation in an inhomogeneous dispersive medium, we attribute the observations to micro lensing in the atomic ensemble in combination with the mode selection of the atom-fiber interface. The approach is confirmed by studies of Rydberg electromagnetically induced transparency line shapes.

research product

Highly controlled optical transport of cold atoms into a hollow-core fiber

We report on an efficient and highly controlled cold atom hollow-core fiber interface, suitable for quantum simulation, information, and sensing. The main focus of this manuscript is a detailed study on transporting cold atoms into the fiber using an optical conveyor belt. We discuss how we can precisely control the spatial, thermal, and temporal distribution of the atoms by, e.g., varying the speed at which the atoms are transported or adjusting the depth of the transport potential according to the atomic position. We characterize the transport of atoms to the fiber tip for these different parameters. In particular, we show that by adapting the transport potential we can lower the temperat…

research product