0000000000079433

AUTHOR

Mauro Gemmi

0000-0001-9542-3783

A new hydrous Al-bearing pyroxene as a water carrier in subduction zones

Abstract A new Hydrous Al-bearing PYroxene (HAPY) phase has been synthesized at 5.4 GPa, 720 °C in the MgO–Al2O3–SiO2–H2O model system. It has the composition Mg2.1Al0.9(OH)2Al0.9Si1.1O6, a C-centered monoclinic cell with a = 9.8827(2), b = 11.6254(2) c = 5.0828(1) A and β = 111.07(1)°. The calculated density is 3.175 g/cm3 and the water content is 6.9% H2O by weight. Its structure has been solved in space group C2/c by the recently developed automated electron diffraction tomography method and refined by synchrotron X-ray powder diffraction. HAPY is a single chain inosilicate very similar to pyroxenes but with three instead of two cations in the octahedral layer, bonded to four oxygens and…

research product

Structure of the new mineral sarrabusite, Pb5CuCl4(SeO3)4, solved by manual electron-diffraction tomography.

The new mineral sarrabusite Pb5CuCl4(SeO3)4 has been discovered in the Sardinian mine of Baccu Locci, near Villaputzu. It occurs as small lemon–yellow spherical aggregates of tabular crystals (< 10 µm) of less than 100 µm in diameter. The crystal structure has been solved from and refined against electron diffraction of a microcrystal. Data sets have been measured by both a manual and an automated version of the new electron-diffraction tomography technique combined with the precession of the electron beam. The sarrabusite structure is monoclinic and consists of (010) layers of straight chains formed by alternating edge-sharing CuO4Cl2 and PbO8 polyhedra parallel to the c axis, which sha…

research product

ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity

research product

3D Electron Diffraction: The Nanocrystallography Revolution

Crystallography of nanocrystalline materials has witnessed a true revolution in the past 10 years, thanks to the introduction of protocols for 3D acquisition and analysis of electron diffraction data. This method provides single-crystal data of structure solution and refinement quality, allowing the atomic structure determination of those materials that remained hitherto unknown because of their limited crystallinity. Several experimental protocols exist, which share the common idea of sampling a sequence of diffraction patterns while the crystal is tilted around a noncrystallographic axis, namely, the goniometer axis of the transmission electron microscope sample stage. This Outlook review…

research product

Texture and Phase Recognition Analysis of beta-NaYF4 Nanocrystals

Texture and phase recognition analysis (TPRA) based on electron nanodiffraction technique is used to characterize the geometry of up-conversion nanocrystals (UCNCs) synthesized by the common thermal-decomposition protocol in the presence of a stoichiometric amount of NH4F. Here, we confirmed experimentally that despite the apparently different shapes of samples (hexagons, rods, and cubes), all the nanocrystals are actually beta-phase hexagonal prisms. This is of relevance since many biological features of nanostructures, such as cellular internalization and cytotoxicity, are governed by their geometry. In addition, reproducibility in biological experiments is paramount.

research product