0000000000079606
AUTHOR
Asoke K. Nandi
Semi-blind Independent Component Analysis of functional MRI elicited by continuous listening to music
This study presents a method to analyze blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (tMRI) signals associated with listening to continuous music. Semi-blind independent component analysis (ICA) was applied to decompose the tMRI data to source level activation maps and their respective temporal courses. The unmixing matrix in the source separation process of ICA was constrained by a variety of acoustic features derived from the piece of music used as the stimulus in the experiment. This allowed more stable estimation and extraction of more activation maps of interest compared to conventional ICA methods.
Determination of the Time Window of Event-Related Potential Using Multiple-Set Consensus Clustering
Clustering is a promising tool for grouping the sequence of similar time-points aimed to identify the attention blocks in spatiotemporal event-related potentials (ERPs) analysis. It is most likely to elicit the appropriate time window for ERP of interest if a suitable clustering method is applied to spatiotemporal ERP. However, how to reliably estimate a proper time window from entire individual subjects’ data is still challenging. In this study, we developed a novel multiset consensus clustering method in which several clustering results of multiple subjects were combined to retrieve the best fitted clustering for all the subjects within a group. Then, the obtained clustering was processed…
A novel heuristic memetic clustering algorithm
In this paper we introduce a novel clustering algorithm based on the Memetic Algorithm meta-heuristic wherein clusters are iteratively evolved using a novel single operator employing a combination of heuristics. Several heuristics are described and employed for the three types of selections used in the operator. The algorithm was exhaustively tested on three benchmark problems and compared to a classical clustering algorithm (k-Medoids) using the same performance metrics. The results show that our clustering algorithm consistently provides better clustering solutions with less computational effort.
Yeast gene CMR1/YDL156W is consistently co-expressed with genes participating in DNA-metabolic processes in a variety of stringent clustering experiments
© 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited. The binarization of consensus partition matrices (Bi-CoPaM) method has, among its unique features, the ability to perform ensemble clustering over the same set of genes from multiple microarray datasets by using various clustering methods in order to generate tunable tight clusters. Therefore, we have used the Bi-CoPaM method to the most synchronized 500 cell-cycle-regulated yeast genes from different microarray datasets to produce four tight, specific …
LOW-RANK APPROXIMATION BASED NON-NEGATIVE MULTI-WAY ARRAY DECOMPOSITION ON EVENT-RELATED POTENTIALS
Non-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation of ERPs by higher-order tensors are usually large-scale, which prevents the popularity of most tensor factorization algorithms. To overcome this issue, we introduce a non-negative canonical polyadic decomposition (NCPD) based on low-rank approximation (LRA) and hierarchical alternating least square (HALS) techniques. We applied NCPD (LRAHALS and benchmark HALS) and CPD to extract multi-domain features of a visual ERP. The features and components extracted by LRAHALS NCP…
Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis
Background: Independent component analysis (ICA) has been often used to decompose fMRI data mostly for the resting-state, block and event-related designs due to its outstanding advantage. For fMRI data during free-listening experiences, only a few exploratory studies applied ICA.New method: For processing the fMRI data elicited by 512-s modern tango, a FFT based band-pass filter was used to further pre-process the fMRI data to remove sources of no interest and noise. Then, a fast model order selection method was applied to estimate the number of sources. Next, both individual ICA and group ICA were performed. Subsequently, ICA components whose temporal courses were significantly correlated …
Paradigm of tunable clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM) for gene discovery
Copyright @ 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight cluster…
SMART: Unique splitting-while-merging framework for gene clustering
© 2014 Fa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named "splitting merging awareness tactics" (SMART), which does not require any a priori knowledge of either the number …
Musicianship can be decoded from magnetic resonance images
AbstractLearning induces structural changes in the brain. Especially repeated, long-term behaviors, such as extensive training of playing a musical instrument, are likely to produce characteristic features to brain structure. However, it is not clear to what extent such structural features can be extracted from magnetic resonance images of the brain. Here we show that it is possible to predict whether a person is a musician or a non-musician based on the thickness of the cerebral cortex measured at 148 brain regions en-compassing the whole cortex. Using a supervised machine-learning technique, we achieved a significant (κ = 0.321, p < 0.001) agreement between the actual and predicted par…
Cluster Aggregation for Analyzing Event-Related Potentials
Topographic analysis are references independent for Event-Related Potentials (ERPs), and thus render statistically unambiguous results. This drives us to develop an effective clustering approach to finding temporal samples possessing similar topographies for analysing the temporal-spatial ERPs data. The previous study called CARTOOL used single clustering method to cluster ERP data. Indeed, given a clustering method, the quality of clustering varies with data and the number of clusters, motivating us to implement and compare multiple clustering algorithms via using multiple similarity measurements. By finding the minimum distance among the various clustering methods and selecting the most s…
Determination of the Time Window of Event-Related Potential Using Multiple-Set Consensus Clustering
Clustering is a promising tool for grouping the sequence of similar time-points aimed to identify the attention blocks in spatiotemporal event-related potentials (ERPs) analysis. It is most likely to elicit the appropriate time window for ERP of interest if a suitable clustering method is applied to spatiotemporal ERP. However, how to reliably estimate a proper time window from entire individual subjects’ data is still challenging. In this study, we developed a novel multiset consensus clustering method in which several clustering results of multiple subjects were combined to retrieve the best fitted clustering for all the subjects within a group. Then, the obtained clustering was processed…
Diffusion map for clustering fMRI spatial maps extracted by Indipendent Component Analysis
Functional magnetic resonance imaging (fMRI) produces data about activity inside the brain, from which spatial maps can be extracted by independent component analysis (ICA). In datasets, there are n spatial maps that contain p voxels. The number of voxels is very high compared to the number of analyzed spatial maps. Clustering of the spatial maps is usually based on correlation matrices. This usually works well, although such a similarity matrix inherently can explain only a certain amount of the total variance contained in the high-dimensional data where n is relatively small but p is large. For high-dimensional space, it is reasonable to perform dimensionality reduction before clustering.…
Ensemble deep clustering analysis for time window determination of event-related potentials
Objective Cluster analysis of spatio-temporal event-related potential (ERP) data is a promising tool for exploring the measurement time window of ERPs. However, even after preprocessing, the remaining noise can result in uncertain cluster maps followed by unreliable time windows while clustering via conventional clustering methods. Methods We designed an ensemble deep clustering pipeline to determine a reliable time window for the ERP of interest from temporal concatenated grand average ERP data. The proposed pipeline includes semi-supervised deep clustering methods initialized by consensus clustering and unsupervised deep clustering methods with end-to-end architectures. Ensemble clusterin…
From Vivaldi to Beatles and back: predicting lateralized brain responses to music.
We aimed at predicting the temporal evolution of brain activity in naturalistic music listening conditions using a combination of neuroimaging and acoustic feature extraction. Participants were scanned using functional Magnetic Resonance Imaging (fMRI) while listening to two musical medleys, including pieces from various genres with and without lyrics. Regression models were built to predict voxel-wise brain activations which were then tested in a cross-validation setting in order to evaluate the robustness of the hence created models across stimuli. To further assess the generalizability of the models we extended the cross-validation procedure by including another dataset, which comprised …
Exploiting ongoing EEG with multilinear partial least squares during free-listening to music
During real-world experiences, determining the stimulus-relevant brain activity is excitingly attractive and is very challenging, particularly in electroencephalography. Here, spectrograms of ongoing electroencephalogram (EEG) of one participant constructed a third-order tensor with three factors of time, frequency and space; and the stimulus data consisting of acoustical features derived from the naturalistic and continuous music formulated a matrix with two factors of time and the number of features. Thus, the multilinear partial least squares (PLS) conforming to the canonical polyadic (CP) model was performed on the tensor and the matrix for decomposing the ongoing EEG. Consequently, we …