0000000000079631
AUTHOR
Marcel Stark
Cannabinoid receptor 1 modulates the autophagic flux independent of mTOR- and BECLIN1-complex
Cannabinoid Receptor 1 (CB1) has been initially described as the receptor for Delta-9-Tetrahydrocannabinol in the central nervous system (CNS), mediating retrograde synaptic signaling of the endocannabinoid system. Beside its expression in various CNS regions, CB1 is ubiquituous in peripheral tissues, where it mediates, among other activities, the cell's energy homeostasis. We sought to examine the role of CB1 in the context of the evolutionarily conserved autophagic machinery, a main constituent of the regulation of the intracellular energy status. Manipulating CB1 by siRNA knockdown in mammalian cells caused an elevated autophagic flux, while the expression of autophagy-related genes rema…
Differential cysteine depletion in respiratory chain complexes enables the distinction of longevity from aerobicity.
Mitochondrially encoded proteins in long-lived animals exhibit a characteristic anomaly on the amino acid usage level: they abstain from the use of cysteine in a lifespan-dependent fashion. Here, we have further investigated this phenomenon by analyzing respiratory chain complex subunits individually. We find that complex I cysteine depletion is the almost exclusive carrier of the cysteine-lifespan correlation, whereas complex IV cysteine depletion is uniform in all aerobic animals, unrelated to longevity, but even more pronounced than complex I cysteine depletion in the longest-lived species. In nuclear encoded subunits of the respiratory chain, we find lifespan-independent cysteine deplet…