0000000000079937
AUTHOR
V. Tretynyk
Construction of a fundamental set of solutions of an arbitrary homogeneous linear difference equation
Abstract The detailed construction of a prefixed fundamental set of solutions of a linear homogeneous difference equation of any order with arbitrarily variable coefficients is reported. The usefulness of the resulting resolutive formula is illustrated by simple applications to the Hermite polynomials and to the Fibonacci sequence.
On new ways of group methods for reduction of evolution-type equations
AbstractNew exact solutions of the evolution-type equations are constructed by means of a non-point (contact) symmetries. Also we analyzed the discrete symmetries of Maxwell equations in vacuum and decoupled ones to the four independent equations that can be solved independently.