0000000000082231
AUTHOR
Doris Koesling
Presynaptic nitric oxide/cGMP facilitates glutamate release via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus
In hippocampal neurons, synaptic transmission is affected by a variety of modulators, including nitric oxide (NO), which was proposed as a retrograde messenger as long as two decades ago. NO signals via two NO-sensitive guanylyl cyclases (NO-GCs) (NO-GC1 and NO-GC2) and the subsequent increase in cGMP. Lack of long-term potentiation in mice deficient in either one of the two NO-GCs demonstrates the involvement of both NO-GCs in synaptic transmission. However, the physiological consequences of NO/cGMP and the cellular mechanisms involved are unknown. Here, we analyzed glutamatergic synaptic transmission, most likely reflecting glutamate release, in the hippocampal CA1 region of NO-GC knockou…
Coexpression of inducible NO synthase and soluble guanylyl cyclase in colonic enterocytes: a pathophysiologic signaling pathway for the initiation of diarrhea by gram‐negative bacteria?
Infectious diarrhea is often caused by the exotoxins of gram-negative bacteria such as Escherichia coli. However, these organisms also contain lipopolysaccharide (LPS) endotoxin. LPS induces nitric oxide synthase II (NOS II, inducible NOS) in various types of cells. We now demonstrate by RNase protection analysis, Western blot, and immunohistochemistry that the expression of NOS II mRNA and protein is markedly induced in colonic enterocytes of mice that ingest LPS with their drinking water. Using the same techniques, significant levels of soluble guanylyl cyclase (GC-S), the effector enzyme of NO, were found constitutively expressed in the mucosa. This creates a pathophysiologic autocrine p…
Nitric oxide/cGMP signaling via guanylyl cyclase isoform 1 modulates glutamate and GABA release in somatosensory cortex of mice
Abstract In hippocampus, two guanylyl cyclases (NO-GC1 and NO-GC2) are involved in the transduction of the effects of nitric oxide (NO) on synaptic transmission. However, the respective roles of the NO-GC isoforms on synaptic transmission are less clear in other regions of the brain. In the present study, we used knock-out mice deficient for the NO-GC1 isoform (NO-GC1 KO) to analyze its role in the glutamatergic and GABAergic neurotransmission at pyramidal neurons in layers II/III of somatosensory cortex. NO-GC1 KO slices revealed reduced frequencies of miniature excitatory- and inhibitory-postsynaptic currents, increased paired-pulse ratios and decreased input–output curves of evoked signa…
Immuno-electron microscopic localization of the alpha(1) and beta(1)-subunits of soluble guanylyl cyclase in the guinea pig organ of corti.
Guanylyl cyclases (GC) catalyze the formation of the intracellular signal molecule cyclic GMP from GTP. For some years it has been known that the heme-containing soluble guanylyl cyclase (sGC) is stimulated by NO and NO-containing compounds. The sGC enzyme consists of two subunits (alpha(1) and beta(1)). In the present study, the alpha(1) and beta(1)-subunits were identified in the guinea pig cochlea at the electron microscopic level using a post-embedding immuno-labeling procedure. Ultrathin sections of LR White embedded specimens were incubated with various concentrations of two rabbit polyclonal antibodies to the alpha(1)- and beta(1)-subunit, respectively. The immunoreactivity was visua…
Nitric Oxide/Cyclic Guanosine Monophosphate Signaling via Guanylyl Cyclase Isoform 1 Mediates Early Changes in Synaptic Transmission and Brain Edema Formation after Traumatic Brain Injury.
Traumatic brain injury (TBI) often induces structural damage, disruption of the blood-brain barrier (BBB), neurodegeneration, and dysfunctions of surviving neuronal networks. Nitric oxide (NO) signaling has been suggested to affect brain functions after TBI. The NO exhibits most of its biological effects by activation of the primary targets-guanylyl cyclases (NO-GCs), which exists in two isoforms (NO-GC1 and NO-GC2), and the subsequently produced cyclic guanosine monophosphate (cGMP). However, the specific function of the NO-NO-GCs-cGMP pathway in the context of brain injury is not fully understood. To investigate the specific role of the isoform NO-GC1 early after brain injuries, we perfor…
Functional coupling of nitric oxide synthase and soluble guanylyl cyclase in controlling catecholamine secretion from bovine chromaffin cells
This study was designed to evaluate whether the enzymes of the nitric oxide/cyclic-GMP pathway, nitric oxide synthase and soluble guanylyl cyclase, are functionally coupled in controlling catecholamine secretion in primary cultures of bovine chromaffin cells. In immunocytochemical studies, 80-85% of the tyrosine hydroxylase-positive chromaffin cells also possessed phenylethanolamine-N-methyltransferase, f1p4cating their capability to synthesize epinephrine. Immunoreactivity for neuronal-type nitric oxide synthase was found in over 90% of all chromaffin cells. Reverse transcription-polymerase chain reaction also demonstrated neuronal-type nitric oxide synthase messenger RNA. Immunoreactivity…
Postsynaptic NO/cGMP Increases NMDA Receptor Currents via Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in the Hippocampus
The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling cascade participates in the modulation of synaptic transmission. The effects of NO are mediated by the NO-sensitive cGMP-forming guanylyl cyclases (NO-GCs), which exist in 2 isoforms with indistinguishable regulatory properties. The lack of long-term potentiation (LTP) in knock-out (KO) mice deficient in either one of the NO-GC isoforms indicates the contribution of both NO-GCs to LTP. Recently, we showed that the NO-GC1 isoform is located presynaptically in glutamatergic neurons and increases the glutamate release via hyperpolarization-activated cyclic nucleotide (HCN)-gated channels in the hippocampus. Electrophysiologi…