0000000000082557
AUTHOR
Christine Lambert
Impact of therapeutically induced reactive oxygen species and radical scavenging by α-tocopherol on tumor cell adhesion
Many tumor treatment modalities such as ionizing radiation or some chemotherapy induce reactive oxygen species (ROS) resulting in therapeutic cell damage. The aim of this study was to analyze whether such ROS induction may affect the mechanical stability of solid tumor tissue by degradation of the extracellular matrix proteins or by a loss of cell adhesion molecules. Additionally, the protective impact of alpha-tocopherol treatment on these processes was studied. Experimental DS-sarcomas in rats were treated with a combination of localized 44 degrees C hyperthermia, inspiratory hyperoxia and xanthine oxidase in order to induce pronounced oxidative stress. A second group of animals were pret…
Intensified oxidative and nitrosative stress following combined ALA-based photodynamic therapy and local hyperthermia in rat tumors.
Oxidative stress-related changes in tumors upon localized hyperthermia (HT), 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) and their combination (ALA+HT) were examined after the observation that the antitumor effects of ALA-PDT could be significantly enhanced upon simultaneous application of HT. Rats bearing s.c. DS-sarcomas (0.6–1.0 ml) on the hind foot dorsum were anesthetized and underwent one of the following treatments: (i) ALA-PDT (375 mg/kg 5-ALA i.v.); (ii) localized HT, 43°C for 60 min; (iii) combined ALA-PDT and HT [=ALA+HT]. Appropriate control experiments were also performed. After treatment, tumors were excised and rapidly frozen for later analysis of nitrosative s…
Impact of Reactive Oxygen Species on the Expression of Adhesion Molecules in Vivo
Many non-surgical tumor treatments induce reactive oxygen species (ROS) which result in cell damage. This study investigated the impact of ROS induction on the expression of adhesion molecules and whether alpha-tocopherol pre-treatment could have a protective effect. Experimental rat DS-sarcomas were treated with a combination of localized 44 degrees C-hyperthermia, inspiratory hyperoxia and xanthine oxidase which together lead to a pronounced ROS induction. Further animals were pre-treated with alpha-tocopherol. The in vivo expression of E- and N-cadherin, alpha-catenin, integrins alpha v, beta 3 and beta 5 as well as of the integrin dimer alpha v beta 3 was assessed by flow cytometry. The…