0000000000082611

AUTHOR

Artem Artyukhov

Obtaining of the Modified NH4NO3 Granules with 3-D Nanoporous Structure: Impact of Humidifier Type on the Granule’s Structure

The article deals with the study of the porous ammonium nitrate granules’ (PAN) nanoporous structure of surface and surface layers. The research results, presented in the article, show that the suggested way to generate PAN allows to provide the granule porous structure without destruction of core and disposal of air from the granules. Analysis of experiments results has shown that various types of humidifiers can form various kinds of pores after drying – “mechanical” pores and “modification” pores. Various types of humidifiers have significant effect on the ratio of values of “mechanical” and “modification” pores. The obtained results allow to select the optimal humidifier composition, wh…

research product

Multilayer modified NH<inf>4</inf>NO<inf>3</inf> granules with 3D nanoporous structure: Effect of the heat treatment regime on the structure of macro- and mezopores

The article is devoted to the investigation of the structure of macro- and mesopores on the surface and inside of modified NH4NO3 granules. The main quality indicators of modified NH4NO3 granules are presented and the relationship between the nanoporous structure of granules and the quality indicators is shown. Various thermodynamic conditions for obtaining a nanoporous structure of the surface and internal layers during the modification of granules are considered. The optimal regime for the uniformity of the temperature distribution in the vortex granulator is the regime of mixed motion of the drying agent. In this mode, mainly “modification” pores are formed, “mechanical” pores due to the…

research product

Phase Composition and Nanoporous Structure of Core and Surface in the Modified Granules of NH4NO3

The article deals with the study of phase composition and crystal nanoporous structure of core and surface layer of porous ammonium nitrate (PAN). The research results, presented in the article, show that the proposed way to generate PAN allows to provide the granule porous structure without changing of its phase composition. The crystal structure of granules after the humidification and heat treatment has some changes due to the increase of the number of pores. The change of crystal structure, in turn, allows to open access to nanopores that are located in the volume of granules. This allows to increase the holding capacity indicator of granules. An important result of conducted researches…

research product