0000000000082653
AUTHOR
Fred Glover
Greedy randomized adaptive search procedure with exterior path relinking for differential dispersion minimization
We propose several new hybrid heuristics for the differential dispersion problem, the best of which consists of a GRASP with sampled greedy construction with variable neighborhood search for local improvement. The heuristic maintains an elite set of high-quality solutions throughout the search. After a fixed number of GRASP iterations, exterior path relinking is applied between all pairs of elite set solutions and the best solution found is returned. Exterior path relinking, or path separation, a variant of the more common interior path relinking, is first applied in this paper. In interior path relinking, paths in the neighborhood solution space connecting good solutions are explored betwe…
Scatter Search and Path-Relinking: Fundamentals, Advances, and Applications
Scatter search is an evolutionary metaheuristic that explores solution spaces by evolving a set of reference points, operating on a small set of solutions while making only limited use of randomization. We give a comprehensive description of the elements and methods that make up its template, including the most recent elements incorporated in successful applications in both global and combinatorial optimization. Path-relinking is an intensification strategy to explore trajectories connecting elite solutions obtained by heuristic methods such as scatter search, tabu search, and GRASP. We describe its mechanics, implementation issues, randomization, the use of pools of high-quality solutions …
Principles of scatter search
Scatter search is an evolutionary method that has been successfully applied to hard optimization problems. The fundamental concepts and principles of the method were first proposed in the 1970s, based on formulations dating back to the 1960s for combining decision rules and problem constraints. In contrast to other evolutionary methods like genetic algorithms, scatter search is founded on the premise that systematic designs and methods for creating new solutions afford significant benefits beyond those derived from recourse to randomization. It uses strategies for search diversification and intensification that have proved effective in a variety of optimization problems. This paper provides…
Scatter Search and Path Relinking: Foundations and Advanced Designs
Scatter Search and its generalized form Path Relinking, are evolutionary methods that have been successfully applied to hard optimization problems. Unlike genetic algorithms, they operate on a small set of solutions and employ diversification strategies of the form proposed in Tabu Search, which give precedence to strategic learning based on adaptive memory, with limited recourse to randomization. The fundamental concepts and principles were first proposed in the 1970s as an extension of formulations, dating back to the 1960s, for combining decision rules and problem constraints. (The constraint combination approaches, known as surrogate constraint methods, now independently provide an impo…
GRASP with exterior path-relinking and restricted local search for the multidimensional two-way number partitioning problem
In this work, we tackle multidimensional two-way number partitioning (MDTWNP) problem by combining GRASP with Exterior Path Relinking. In the last few years, the combination of GRASP with path relinking (PR) has emerged as a highly effective tool for finding high-quality solutions for several difficult problems in reasonable computational time. However, in most of the cases, this hybridisation is limited to the variant known as interior PR. Here, we couple GRASP with the "exterior form" of path relinking and perform extensive experimentation to evaluate this variant. In addition, we enhance our GRASP with PR method with a novel local search method specially designed for the MDTWNP problem. …
Scatter Search and Path Relinking: Advances and Applications
Scatter search (SS) is a population-based method that has recently been shown to yield promising outcomes for solving combinatorial and nonlinear optimization problems. Based on formulations originally proposed in the 1960s for combining decision rules and problem constraints, SS uses strategies for combining solution vectors that have proved effective in a variety of problem settings. Path relinking (PR) has been suggested as an approach to integrate intensification and diversification strategies in a search scheme. The approach may be viewed as an extreme (highly focused) instance of a strategy that seeks to incorporate attributes of high quality solutions, by creating inducements to favo…
Adaptive memory programming for constrained global optimization
The problem of finding a global optimum of a constrained multimodal function has been the subject of intensive study in recent years. Several effective global optimization algorithms for constrained problems have been developed; among them, the multi-start procedures discussed in Ugray et al. [1] are the most effective. We present some new multi-start methods based on the framework of adaptive memory programming (AMP), which involve memory structures that are superimposed on a local optimizer. Computational comparisons involving widely used gradient-based local solvers, such as Conopt and OQNLP, are performed on a testbed of 41 problems that have been used to calibrate the performance of su…
Reducing the bandwidth of a sparse matrix with tabu search
The bandwidth of a matrix { } ij a A = is defined as the maximum absolute difference between i and j for which 0 ≠ ij a . The problem of reducing the bandwidth of a matrix consists of finding a permutation of the rows and columns that keeps the nonzero elements in a band that is as close as possible to the main diagonal of the matrix. This NP-complete problem can also be formulated as a labeling of vertices on a graph, where edges are the nonzero elements of the corresponding symmetrical matrix. Many bandwidth reduction algorithms have been developed since the 1960s and applied to structural engineering, fluid dynamics and network analysis. For the most part, these procedures do not incorpo…
Tabu search with strategic oscillation for the quadratic minimum spanning tree
The quadratic minimum spanning tree problem consists of determining a spanning tree that minimizes the sum of costs of the edges and pairs of edges in the tree. Many algorithms and methods have been proposed for this hard combinatorial problem, including several highly sophisticated metaheuristics. This article presents a simple Tabu Search (TS) for this problem that incorporates Strategic Oscillation (SO) by alternating between constructive and destructive phases. The commonalties shared by this strategy and the more recently introduced methodology called iterated greedy search are shown and implications of their differences regarding the use of memory structures are identified. Extensive …
A Multistart Scatter Search Heuristic for Smooth NLP and MINLP Problems
The algorithm described here, called OptQuest/NLP or OQNLP, is a heuristic designed to find global optima for pure and mixed integer nonlinear problems with many constraints and variables, where all problem functions are differentiable with respect to the continuous variables. It uses OptQuest, a commercial implementation of scatter search developed by OptTek Systems, Inc., to provide starting points for a gradient-based local NLP solver. This solver seeks a local solution from a subset of these points, holding discrete variables fixed. The procedure is motivated by our desire to combine the superior accuracy and feasibility-seeking behavior of gradient-based local NLP solvers with the glob…
Pseudo-Cut Strategies for Global Optimization
Motivated by the successful use of a pseudo-cut strategy within the setting of constrained nonlinear and nonconvex optimization in Lasdon et al. (2010), we propose a framework for general pseudo-cut strategies in global optimization that provides a broader and more comprehensive range of methods. The fundamental idea is to introduce linear cutting planes that provide temporary, possibly invalid, restrictions on the space of feasible solutions, as proposed in the setting of the tabu search metaheuristic in Glover (1989), in order to guide a solution process toward a global optimum, where the cutting planes can be discarded and replaced by others as the process continues. These strategies can…
Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
The algorithm described here, called OptQuest/NLP or OQNLP, is a heuristic designed to find global optima for pure and mixed integer nonlinear problems with many constraints and variables, where all problem functions are differentiable with respect to the continuous variables. It uses OptQuest, a commercial implementation of scatter search developed by OptTek Systems, Inc., to provide starting points for any gradient-based local solver for nonlinear programming (NLP) problems. This solver seeks a local solution from a subset of these points, holding discrete variables fixed. The procedure is motivated by our desire to combine the superior accuracy and feasibility-seeking behavior of gradie…
Scatter Search and Path Relinking
Scatter search (SS) and path relinking (PR) are evolutionary methods that have been successfully applied to a wide range of hard optimization problems. The fundamental concepts and principles of the methods were first proposed in the 1970s and 1980s, and were based on formulations, dating back to the 1960s, for combining decision rules and problem constraints. The methods use strategies for search diversification and intensification that have proved effective in a variety of optimization problems and that have sometimes been embedded in other evolutionary methods to yield improved performance. This paper examines the scatter search and path relinking methodologies from both conceptual and p…