0000000000082944

AUTHOR

Andrea Caponio

Memetic Algorithms in Engineering and Design

When dealing with real-world applications, one often faces non-linear and nondifferentiable optimization problems which do not allow the employment of exact methods. In addition, as highlighted in [104], popular local search methods (e.g. Hooke-Jeeves, Nelder Mead and Rosenbrock) can be ill-suited when the real-world problem is characterized by a complex and highly multi-modal fitness landscape since they tend to converge to local optima. In these situations, population based meta-heuristics can be a reasonable choice, since they have a good potential in detecting high quality solutions. For these reasons, meta-heuristics, such as Genetic Algorithms (GAs), Evolution Strategy (ES), Particle …

research product

Integrating Cross-Dominance Adaptation in Multi-objective Memetic Algorithms

This chapter proposes a novel adaptive memetic approach for solving multi-objective optimization problems. The proposed approach introduces the novel concept of crossdominance and employs this concept within a novel probabilistic scheme which makes use of the Wigner distribution for performing coordination of the local search. Thus, two local searchers are integrated within an evolutionary framework which resorts to an evolutionary algorithm previously proposed in literature for solving multi-objective problems. These two local searchers are a multi-objective version of simulated annealing and a novel multi-objective implementation of the Rosenbrock algorithm.

research product

Differential Evolution with Scale Factor Local Search for Large Scale Problems

This chapter proposes the integration of fitness diversity adaptation techniques within the parameter setting of Differential Evolution (DE). The scale factor and crossover rate are encoded within each genotype and self-adaptively updated during the evolution by means of a probabilistic criterion which takes into account the diversity properties of the entire population. The population size is also adaptively controlled by means of a novel technique based on a measurement of the fitness diversity. An extensive experimental setup has been implemented by including multivariate problems and hard to solve fitness landscapes. A comparison of the performance has been conducted by considering a st…

research product