0000000000083032

AUTHOR

Klaus Gessner

0000-0002-6591-9777

Early exhumation of high-pressure rocks in extrusion wedges: Cycladic blueschist unit in the eastern Aegean, Greece, and Turkey

Structural, metamorphic, and geochronologic work shows that the Ampelos/Dilek nappe of the Cycladic blueschist unit in the eastern Aegean constitutes a wedge of high-pressure rocks extruded during early stages of orogeny. The extrusion wedge formed during the incipient collision of the Anatolian microcontinent with Eurasia when subduction and deep underthrusting ceased and the Ampelos/Dilek nappe was thrust southward over the greenschist-facies Menderes nappes along its lower tectonic contact, the Cycladic-Menderes thrust, effectively cutting out a ∼30- to 40-km-thick section of crust. The upper contact of the Ampelos/Dilek extrusion wedge is the top-to-the-NE Selcuk normal shear zone, alon…

research product

Contrasting metamorphic evolution of metasedimentary rocks from the Çine and Selimiye nappes in the Anatolide belt, western Turkey

P-T conditions, mineral isograds, the relation of the latter to foliation planes and kinematic indicators are used to elucidate the tectonic nature and evolution of a shear zone in an orogen exhumed from mid- crustal depths in western Turkey. Furthermore, we discuss whether simple monometamorphic fabrics of rock units from different nappes result from one single orogeny or are related to different orogenies. Metasedimentary rocks from the Cine and Selimiye nappes at the southern rim of the Anatolide belt of western Turkey record different metamorphic evolutions. The Eocene Selimiye shear zone separates both nappes. Metasedimentary rocks from the Cine nappe underneath the Selimiye shear zone…

research product

On shearing, magmatism and regional deformation in Neoarchean granite-greenstone systems: Insights from the Yilgarn Craton

Abstract The structure of the Neoarchean Yilgarn Craton is dominated by craton-scale high-strain zones, mostly associated with highly-deformed elongate granitic bodies and transposed greenstone belts. These shear zones developed during widespread and prolonged magmatic activity that led to a nearly complete reworking of the felsic continental crust. The spatial, temporal and genetic relationships between such a voluminous and protracted event of crustal reworking and the development of the craton-scale shear zone network are unclear. Here, we combine new structural, geophysical and geochemical data to investigate the relationship between crustal-scale shear zones and large syntectonic pluto…

research product

Structural and thermal history of poly-orogenic basement: U-Pb geochronology of granitoid rocks in the southern Menderes Massif, Western Turkey

Ion microprobe U-Pb dating of granitoid rocks from key structural outcrops of the Menderes Massif in western Turkey provides an important constraint to the thermal and deformational history of a structurally complex metamorphic belt within the Alpine chain. Crystallization ages of two granite protoliths, derived from the weighted means of rim ages and the ages of homogeneous prismatic zircon grains, are 541 +/- 14 Ma and 566 +/- 9 Ma, whereas the cores of zoned pyramidal and short-prismatic zircon grains range from Palaeoproterozoic to Neoproterozoic in age. These ages indicate that amphibolite- to gramilite-facies metamorphic rocks in much of the Menderes Massif were deformed, metamorphose…

research product

How to resist subduction: evidence for large-scale out-of-sequence thrusting during Eocene collision in western Turkey

Significant along-strike variations have locked large parts of the Alpine subduction complex in the Eastern Mediterranean in the Eocene, and defined the end of high-pressure accretion in western Turkey. Structural analysis reveals that the Anatolide belt in western Turkey formed under greenschist facies metamorphic conditions in the Eocene when a high-pressure metamorphic fragment of the Adriatic plate (the Cycladic blueschist unit) was thrust onto the imbricated mid-crustal units of the Anatolian microcontinent (the Menderes nappes). The contact between the Cycladic blueschist unit and the Menderes nappes, the Cyclades–Menderes thrust, represents an out-of-sequence ramp which cuts up-sect…

research product

Tectonic significance of deformation patterns in granitoid rocks of the Menderes nappes, Anatolide belt, southwest Turkey

Deformation fabrics in Proterozoic/Cambrian granitic rocks of the Cine nappe, and mid-Triassic granites of the Bozdag nappe constrain aspects of the tectonometamorphic evolution of the Menderes nappes of southwest Turkey. Based on intrusive contacts and structural criteria, the Proterozoic/Cambrian granitic rocks of the Cine nappe are subdivided into older orthogneisses and younger metagranites. The deformation history of the granitic rocks documents two major deformation events. An early, pre-Alpine deformation event (DPA) during amphibolite-facies metamorphism affected only the orthogneisses and produced predominantly top-to-NE shear-sense indicators associated with a NE-trending stretchi…

research product

Tectonic denudation of a Late Cretaceous-Tertiary collisional belt: Regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey

Thermochronological data reveal that the Late Cretaceous–Tertiary nappe pile of the Anatolide belt of western Turkey displays a two-stage cooling history. Three crustal segments differing in structure and cooling history have been identified. The Central Menderes metamorphic core complex represents an ‘inner’ axial segment of the Anatolide belt and exposes the lowest structural levels of the nappe pile, whereas the two ‘outer’ submassifs, the Gördes submassif to the north and the Çine submassif to the south, represent higher levels of the nappe pile. A regionally significant phase of cooling in the Late Oligocene and Early Miocene affected the outer two submassifs and the upper structural l…

research product

An active bivergent rolling-hinge detachment system: Central Menderes metamorphic core complex in western Turkey.

Two symmetrically arranged detachment systems delimit the central Menderes metamorphic core complex and define a bivergent continental breakaway zone in the Anatolide belt of western Turkey. Structural analysis and apatite fission-track thermochronology show that a large east-trending syncline within the Alpine nappe stack in the central part of the orogen is related to late Miocene-early Pliocene to recent core-complex formation. The syncline formed as a result of two opposite-facing rolling hinges in the footwalls of each of the two detachments. Back-rotation of the syncline limbs suggests that the detachments rotated from an initial dip of 50 degrees -60 degrees to a currently shallow or…

research product