Greenhouse Gas Emissions from Wastewater Treatment Plants on a Plantwide Scale: Sensitivity and Uncertainty Analysis
This paper presents the sensitivity and uncertainty analysis of a mathematical model for greenhouse gas emission (GHG) and energy consumption assessment in wastewater treatment plants. A sensitivity analysis was carried out (using two different methods) to determine which model factors have the greatest effect on the predicted values of the GHG production. Further, an uncertainty analysis was carried out to quantify the uncertainty of the key model outputs, such as carbon dioxide production from activated sludge treatment. The results show that influent fractionation factors, which characterize influent composition, have an important role on direct and indirect GHGs production and emission.…
A novel comprehensive procedure for estimating greenhouse gas emissions from water resource recovery facilities
The emissions of the major greenhouse gases (GHGs), i.e. carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from water resource recovery facilities (WRRFs) are of increasing concern in the water industry. In order to produce useful and comparable information for monitoring, assessing, and reporting GHG emissions from WRRFs, there is a need for a generally accepted methodology for their quantification. This paper aims at proposing the first protocol for monitoring and accounting for GHG emissions from WRRFs, taking into account both direct and indirect internal emissions and focusing the attention on plant sections known to be primarily responsible for GHG emissions (i.e. oxidation…
Greenhouse gases from wastewater treatment — A review of modelling tools
Nitrous oxide, carbon dioxide and methane are greenhouse gases (GHG) emitted from wastewater treatment that contribute to its carbon footprint. As a result of the increasing awareness of GHG emissions from wastewater treatment plants (WWTPs), new modelling, design, and operational tools have been developed to address and reduce GHG emissions at the plant-wide scale and beyond. This paper reviews the state-of-the-art and the recently developed tools used to understand and manage GHG emissions from WWTPs, and discusses open problems and research gaps. The literature review reveals that knowledge on the processes related to N2O formation, especially due to autotrophic biomass, is still incompl…