0000000000083841

AUTHOR

Nirupam Chakraborti

A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem

A new data-driven reference vector-guided evolutionary algorithm has been successfully implemented to construct surrogate models for various objectives pertinent to an industrial blast furnace. A total of eight objectives have been modeled using the operational data of the furnace using 12 process variables identified through a principal component analysis and optimized simultaneously. The capability of this algorithm to handle a large number of objectives, which has been lacking earlier, results in a more efficient setting of the operational parameters of the furnace, leading to a precisely optimized hot metal production process. peerReviewed

research product

Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives

A new bi-objective genetic programming (BioGP) technique has been developed for meta-modeling and applied in a chromatographic separation process using a simulated moving bed (SMB) process. The BioGP technique initially minimizes training error through a single objective optimization procedure and then a trade-off between complexity and accuracy is worked out through a genetic algorithm based bi-objective optimization strategy. A benefit of the BioGP approach is that an expert user or a decision maker (DM) can flexibly select the mathematical operations involved to construct a meta-model of desired complexity or accuracy. It is also designed to combat bloat - a perennial problem in genetic …

research product

Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework

Solving real-life data-driven multiobjective optimization problems involves many complicated challenges. These challenges include preprocessing the data, modelling the objective functions, getting a meaningful formulation of the problem, and supporting decision makers to find preferred solutions in the existence of conflicting objective functions. In this paper, we tackle the problem of optimizing the composition of microalloyed steels to get good mechanical properties such as yield strength, percentage elongation, and Charpy energy. We formulate a problem with six objective functions based on data available and support two decision makers in finding a solution that satisfies them both. To …

research product