0000000000083843

AUTHOR

Yaochu Jin

0000-0003-1100-0631

showing 10 related works from this author

A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem

2017

A new data-driven reference vector-guided evolutionary algorithm has been successfully implemented to construct surrogate models for various objectives pertinent to an industrial blast furnace. A total of eight objectives have been modeled using the operational data of the furnace using 12 process variables identified through a principal component analysis and optimized simultaneously. The capability of this algorithm to handle a large number of objectives, which has been lacking earlier, results in a more efficient setting of the operational parameters of the furnace, leading to a precisely optimized hot metal production process. peerReviewed

data-driven optimizationPareto optimalityEngineeringBlast furnaceMathematical optimizationOptimization problemmodel managementblast furnaceEvolutionary algorithm02 engineering and technologyMulti-objective optimizationIndustrial and Manufacturing Engineering020501 mining & metallurgyData-drivenironmakingoptimointi0202 electrical engineering electronic engineering information engineeringGeneral Materials Scienceta113business.industrypareto-tehokkuusMechanical EngineeringProcess (computing)metamodelingMetamodeling0205 materials engineeringmulti-objective optimizationMechanics of MaterialsPrincipal component analysis020201 artificial intelligence & image processingbusinessrautateollisuus
researchProduct

On Constraint Handling in Surrogate-Assisted Evolutionary Many-Objective Optimization

2016

Surrogate-assisted evolutionary multiobjective optimization algorithms are often used to solve computationally expensive problems. But their efficacy on handling constrained optimization problems having more than three objectives has not been widely studied. Particularly the issue of how feasible and infeasible solutions are handled in generating a data set for training a surrogate has not received much attention. In this paper, we use a recently proposed Kriging-assisted evolutionary algorithm for many-objective optimization and investigate the effect of infeasible solutions on the performance of the surrogates. We assume that constraint functions are computationally inexpensive and consid…

Mathematical optimization021103 operations researchComputer scienceFeasible region0211 other engineering and technologiesEvolutionary algorithm02 engineering and technologyConstraint satisfactionMulti-objective optimizationConstraint (information theory)Data set0202 electrical engineering electronic engineering information engineeringBenchmark (computing)020201 artificial intelligence & image processingEvolutionary programming
researchProduct

Surrogate-assisted evolutionary multiobjective shape optimization of an air intake ventilation system

2017

We tackle three different challenges in solving a real-world industrial problem: formulating the optimization problem, connecting different simulation tools and dealing with computationally expensive objective functions. The problem to be optimized is an air intake ventilation system of a tractor and consists of three computationally expensive objective functions. We describe the modeling of the system and its numerical evaluation with a commercial software. To obtain solutions in few function evaluations, a recently proposed surrogate-assisted evolutionary algorithm K-RVEA is applied. The diameters of four different outlets of the ventilation system are considered as decision variables. Fr…

ta1130209 industrial biotechnologyMathematical optimizationnumerical modelsOptimization problemlineaarinen optimointiLinear programmingComputer sciencesoftwarehydraulijärjestelmätventilationEvolutionary algorithmlinear programming02 engineering and technologyFunction (mathematics)Set (abstract data type)resistance020901 industrial engineering & automationhydraulic systemsilmanvaihto0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingShape optimizationoptimization
researchProduct

Surrogate-assisted multicriteria optimization: Complexities, prospective solutions, and business case

2017

Complexity in solving real-world multicriteria optimization problems often stems from the fact that complex, expensive, and/or time-consuming simulation tools or physical experiments are used to evaluate solutions to a problem. In such settings, it is common to use efficient computational models, often known as surrogates or metamodels, to approximate the outcome (objective or constraint function value) of a simulation or physical experiment. The presence of multiple objective functions poses an additional layer of complexity for surrogate-assisted optimization. For example, complexities may relate to the appropriate selection of metamodels for the individual objective functions, extensive …

optimization problemsMathematical optimizationComputer scienceStrategy and Managementmedia_common.quotation_subjectConstraint (computer-aided design)0211 other engineering and technologiesmultiple criteria decision makingGeneral Decision Sciences02 engineering and technologyMulti-objective optimizationOutcome (game theory)evolutionary multicriteria optimizationEngineering optimizationmulticriteria optimization0202 electrical engineering electronic engineering information engineeringPoint (geometry)Business caseFunction (engineering)media_commonta113Computational model021103 operations researchmetamodelsexpensive optimization problemssurrogatesexpensesmachine learning020201 artificial intelligence & image processing
researchProduct

A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization

2018

We propose a surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive optimization problems with more than three objectives. The proposed algorithm is based on a recently developed evolutionary algorithm for many-objective optimization that relies on a set of adaptive reference vectors for selection. The proposed surrogateassisted evolutionary algorithm uses Kriging to approximate each objective function to reduce the computational cost. In managing the Kriging models, the algorithm focuses on the balance of diversity and convergence by making use of the uncertainty information in the approximated objective values given by the Kriging models, the distr…

Pareto optimalityPareto-tehokkuus0209 industrial biotechnologyMathematical optimizationOptimization problemComputer sciencemodel managementpäätöksentekoEvolutionary algorithmInteractive evolutionary computation02 engineering and technologyEvolutionary computationTheoretical Computer Science020901 industrial engineering & automationKrigingalgoritmit0202 electrical engineering electronic engineering information engineeringvektorit (matematiikka)multiobjective optimizationcomputational costsurrogate-assisted evolutionary algorithmsBayesian optimizationta113Cultural algorithmpareto-tehokkuusbayesilainen menetelmäta111Approximation algorithmImperialist competitive algorithmmonitavoiteoptimointiKrigingkoneoppiminenComputational Theory and Mathematics020201 artificial intelligence & image processingreference vectorsSoftwareIEEE Transactions on Evolutionary Computation
researchProduct

Surrogate-Assisted Evolutionary Optimization of Large Problems

2019

This chapter presents some recent advances in surrogate-assisted evolutionary optimization of large problems. By large problems, we mean either the number of decision variables is large, or the number of objectives is large, or both. These problems pose challenges to evolutionary algorithms themselves, constructing surrogates and surrogate management. To address these challenges, we proposed two algorithms, one called kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) for many-objective optimization, and the other called cooperative swarm optimization algorithm (SA-COSO) for high-dimensional single-objective optimization. Empirical studies demonstrate that K-RVEA works…

Mathematical optimizationOptimization algorithmoptimisationComputer scienceEvolutionary algorithmSwarm behaviourevoluutiolaskenta02 engineering and technologymatemaattinen optimointimathematical optimisationDecision variablesEmpirical researchoptimointievolutionary computation0202 electrical engineering electronic engineering information engineeringReference vector020201 artificial intelligence & image processing
researchProduct

Connections of reference vectors and different types of preference information in interactive multiobjective evolutionary algorithms

2016

We study how different types of preference information coming from a human decision maker can be utilized in an interactive multiobjective evolutionary optimization algorithm (MOEA). The idea is to convert different types of preference information into a unified format which can then be utilized in an interactive MOEA to guide the search towards the most preferred solution(s). The format chosen here is a set of reference vectors which is used within the interactive version of the reference vector guided evolutionary algorithm (RVEA). The proposed interactive RVEA is then applied to the multiple-disk clutch brake design problem with five objectives to demonstrate the potential of the idea in…

Optimization problemLinear programmingComputer science0211 other engineering and technologiesEvolutionary algorithmInteractive evolutionary computationpreference information02 engineering and technologyMachine learningcomputer.software_genredecision makingEvolutionary computationSet (abstract data type)vectors0202 electrical engineering electronic engineering information engineeringta113021103 operations researchbusiness.industryta111Approximation algorithmPreferencemultiobjective evolutionary optimization algorithm020201 artificial intelligence & image processingArtificial intelligencebusinessoptimizationcomputer2016 IEEE Symposium Series on Computational Intelligence (SSCI)
researchProduct

Multiobjective shape design in a ventilation system with a preference-driven surrogate-assisted evolutionary algorithm

2019

We formulate and solve a real-world shape design optimization problem of an air intake ventilation system in a tractor cabin by using a preference-based surrogate-assisted evolutionary multiobjective optimization algorithm. We are motivated by practical applicability and focus on two main challenges faced by practitioners in industry: 1) meaningful formulation of the optimization problem reflecting the needs of a decision maker and 2) finding a desirable solution based on a decision maker’s preferences when solving a problem with computationally expensive function evaluations. For the first challenge, we describe the procedure of modelling a component in the air intake ventilation system wi…

Pareto optimalitymallintaminenMathematical optimizationOptimization problemProcess (engineering)Computer sciencemedia_common.quotation_subjectmultiple criteria decision makingEvolutionary algorithmoptimal shape designpreference information0102 computer and information sciences02 engineering and technology01 natural sciencesComponent (UML)0202 electrical engineering electronic engineering information engineeringBaseline (configuration management)Function (engineering)Preference (economics)media_commonpareto-tehokkuusilmanvaihtojärjestelmätmetamodelsmonitavoiteoptimointikoneoppiminen010201 computation theory & mathematicsevolutionary multi-objective optimizationcomputational costs020201 artificial intelligence & image processingmuotoProceedings of the Genetic and Evolutionary Computation Conference
researchProduct

Data-Driven Evolutionary Optimization: An Overview and Case Studies

2019

Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may not exist, instead computationally expensive numerical simulations or costly physical experiments must be performed for fitness evaluations. In more extreme cases, only historical data are available for performing optimization and no new data can be generated during optimization. Solving evolutionary optimization problems driven by data collected in simulations, physical experiments, production processes, or daily life are termed data-driven evolutionary optimization. In this…

data-driven optimizationMathematical optimizationOptimization problemmodel managementevoluutiolaskenta02 engineering and technologymatemaattinen optimointiEvolutionary computationTheoretical Computer ScienceData modelingData-drivenModel managementkoneoppiminenComputational Theory and MathematicsdatatiedeoptimointiTaxonomy (general)Constraint functionsalgoritmit0202 electrical engineering electronic engineering information engineeringProduction (economics)020201 artificial intelligence & image processingsurrogateevolutionary algorithmsSoftware
researchProduct

On Constraint Handling in Surrogate-Assisted Evolutionary Many-Objective Optimization

2016

Surrogate-assisted evolutionary multiobjective optimization algorithms are often used to solve computationally expensive problems. But their efficacy on handling constrained optimization problems having more than three objectives has not been widely studied. Particularly the issue of how feasible and infeasible solutions are handled in generating a data set for training a surrogate has not received much attention. In this paper, we use a recently proposed Kriging-assisted evolutionary algorithm for many-objective optimization and investigate the effect of infeasible solutions on the performance of the surrogates. We assume that constraint functions are computationally inexpensive and consid…

evolution controlmetamodelpäätöksentekomultiobjective optimizationcomputational cost
researchProduct