0000000000083856

AUTHOR

Catalin Badea

0000-0001-9080-4851

showing 3 related works from this author

Hilbert space operators with two-isometric dilations

2021

A bounded linear Hilbert space operator $S$ is said to be a $2$-isometry if the operator $S$ and its adjoint $S^*$ satisfy the relation $S^{*2}S^{2} - 2 S^{*}S + I = 0$. In this paper, we study Hilbert space operators having liftings or dilations to $2$-isometries. The adjoint of an operator which admits such liftings is characterized as the restriction of a backward shift on a Hilbert space of vector-valued analytic functions. These results are applied to concave operators (i.e., operators $S$ such that $S^{*2}S^{2} - 2 S^{*}S + I \le 0$) and to operators similar to contractions or isometries. Two types of liftings to $2$-isometries, as well as the extensions induced by them, are construct…

47[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]A-contractionFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics - Spectral Theory47A63Dirichlet shift MSC (2010): 47A0547A20FOS: Mathematicsdilationsconcave operator2-isometric lifting47A15Spectral Theory (math.SP)
researchProduct

THE CAUCHY DUAL AND 2-ISOMETRIC LIFTINGS OF CONCAVE OPERATORS

2018

We present some 2-isometric lifting and extension results for Hilbert space concave operators. For a special class of concave operators we study their Cauchy dual operators and discuss conditions under which these operators are subnormal. In particular, the quasinormality of compressions of such operators is studied.

Cauchy dual operatorsubnormal operatorPure mathematics[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]01 natural sciencessymbols.namesakeFOS: Mathematics0101 mathematicsconcave operatorMathematics47A05 47A15 47A20 47A63Mathematics::Functional AnalysisMathematics::Operator AlgebrasApplied Mathematics010102 general mathematicsHilbert spaceCauchy distributionExtension (predicate logic)Special class2-isometric liftingsA-contractionFunctional Analysis (math.FA)Dual (category theory)Mathematics - Functional Analysis010101 applied mathematicssymbolsAnalysis
researchProduct

Harnack and Shmul'yan pre-order relations for Hilbert space contractions

2015

We study the behavior of some classes of Hilbert space contractions with respect to Harnack and Shmul'yan pre-orders and the corresponding equivalence relations. We give some conditions under which the Harnack equivalence of two given contractions is equivalent to their Shmul'yan equivalence and to the existence of an arc joining the two contractions in the class of operator-valued contractive analytic functions on the unit disc. We apply some of these results to quasi-isometries and quasi-normal contractions, as well as to partial isometries for which we show that their Harnack and Shmul'yan parts coincide. We also discuss an extension, recently considered by S.~ter~Horst [\emph{J. Operato…

Pure mathematicsGeneral Mathematics[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]01 natural sciencesasymptotic limitpartial isometriessymbols.namesakeFOS: MathematicsEquivalence relation0101 mathematicsEquivalence (formal languages)Toeplitz operatorsMathematicsPartial isometry010102 general mathematicsClass functionHilbert spacequasi normal operators16. Peace & justiceHarnack pre-orderFunctional Analysis (math.FA)010101 applied mathematicsMathematics - Functional Analysis47A10 47A45Hilbert space contractionssymbolsShmul'yan pre-orderAnalytic function
researchProduct