0000000000083857
AUTHOR
Laurian Suciu
Hilbert space operators with two-isometric dilations
A bounded linear Hilbert space operator $S$ is said to be a $2$-isometry if the operator $S$ and its adjoint $S^*$ satisfy the relation $S^{*2}S^{2} - 2 S^{*}S + I = 0$. In this paper, we study Hilbert space operators having liftings or dilations to $2$-isometries. The adjoint of an operator which admits such liftings is characterized as the restriction of a backward shift on a Hilbert space of vector-valued analytic functions. These results are applied to concave operators (i.e., operators $S$ such that $S^{*2}S^{2} - 2 S^{*}S + I \le 0$) and to operators similar to contractions or isometries. Two types of liftings to $2$-isometries, as well as the extensions induced by them, are construct…
THE CAUCHY DUAL AND 2-ISOMETRIC LIFTINGS OF CONCAVE OPERATORS
We present some 2-isometric lifting and extension results for Hilbert space concave operators. For a special class of concave operators we study their Cauchy dual operators and discuss conditions under which these operators are subnormal. In particular, the quasinormality of compressions of such operators is studied.
Decompositions and asymptotic limit for bicontractions
The asymptotic limit of a bicontraction T (that is, a pair of commuting contractions) on a Hilbert space H is used to describe a Nagy–Foias–Langer type decomposition of T. This decomposition is refined in the case when the asymptotic limit of T is an orthogonal projection. The case of a bicontraction T consisting of hyponormal (even quasinormal) contractions is also considered, where we have ST∗=S2T∗.
Operators intertwining with isometries and Brownian parts of 2-isometries
Abstract For two operators A and T ( A ≥ 0 ) on a Hilbert space H satisfying T ⁎ A T = A and the A-regularity condition A T = A 1 / 2 T A 1 / 2 we study the subspace N ( A − A 2 ) in connection with N ( A T − T A ) , for T belonging to different classes. Our results generalize those due to C. Kubrusly concerning the case when T is a contraction and A = S T is the asymptotic limit of T. Also, the particular case of a 2-isometry in the sense of S. Richter as well as J. Agler and M. Stankus is considered. For such operators, under the same regularity condition we completely describe the reducing Brownian unitary and isometric parts, as well as the invariant Brownian isometric part. Some exampl…
Uniformly ergodic A-contractions on Hilbert spaces
On ergodic operator means in Banach spaces
We consider a large class of operator means and prove that a number of ergodic theorems, as well as growth estimates known for particular cases, continue to hold in the general context under fairly mild regularity conditions. The methods developed in the paper not only yield a new approach based on a general point of view, but also lead to results that are new, even in the context of the classical Cesaro means.
Liftings and extensions of operators in Brownian setting
We investigate the operators T on a Hilbert space H which have 2-isometric liftings S with the property S ∗ S H ⊂ H . We show that such liftings are closely related to some extensions of T, which h...
Partial isometries and the conjecture of C.K. Fong and S.K. Tsui
Abstract We investigate some bounded linear operators T on a Hilbert space which satisfy the condition | T | ≤ | Re T | . We describe the maximum invariant subspace for a contraction T on which T is a partial isometry to obtain that, in certain cases, the above condition ensures that T is self-adjoint. In other words we show that the Fong–Tsui conjecture holds for partial isometries, contractive quasi-isometries, or 2-quasi-isometries, and Brownian isometries of positive covariance, or even for a more general class of operators.
Harnack and Shmul'yan pre-order relations for Hilbert space contractions
We study the behavior of some classes of Hilbert space contractions with respect to Harnack and Shmul'yan pre-orders and the corresponding equivalence relations. We give some conditions under which the Harnack equivalence of two given contractions is equivalent to their Shmul'yan equivalence and to the existence of an arc joining the two contractions in the class of operator-valued contractive analytic functions on the unit disc. We apply some of these results to quasi-isometries and quasi-normal contractions, as well as to partial isometries for which we show that their Harnack and Shmul'yan parts coincide. We also discuss an extension, recently considered by S.~ter~Horst [\emph{J. Operato…
Generalized inverses and similarity to partial isometries
Abstract We obtain some results related to the problems of Badea and Mbekhta (2005) [1] concerning the similarity to partial isometries using the generalized inverses. Especially, we involve the Moore–Penrose inverses. Also a characterization for such a similarity is given in the terms of dilations similar to unitary operators, which leads to a new criterion for the similarity to an isometry and to a quasinormal partial isometry.
Ergodic properties of operators in some semi-Hilbertian spaces
This article deals with linear operators T on a complex Hilbert space ℋ, which are bounded with respect to the seminorm induced by a positive operator A on ℋ. The A-adjoint and A 1/2-adjoint of T are considered to obtain some ergodic conditions for T with respect to A. These operators are also employed to investigate the class of orthogonally mean ergodic operators as well as that of A-power bounded operators. Some classes of orthogonally mean ergodic or A-ergodic operators, which come from the theory of generalized Toeplitz operators are considered. In particular, we give an example of an A-ergodic operator (with an injective A) which is not Cesaro ergodic, such that T * is not a quasiaff…
Convex and expansive liftings close to two-isometries and power bounded operators
Abstract In the context of Hilbert space operators, there is a strong relationship between convex and expansive operators and 2-isometries. In this paper, we investigate the bounded linear operators T on a Hilbert space H which have a 2-isometric lifting S on a Hilbert space K containing H as a closed subspace invariant for S ⁎ S . This last property holds in particular when S | K ⊖ H is an isometry. We relate such 2-isometric liftings S by some convex, concave or expansive liftings of the same type as S. We also examine some power bounded operators with such liftings, as well as an intermediate expansive lifting associated with T on the space H ⊕ l + 2 ( H ) . The latter notion is used to …
Quasi-isometries associated to A-contractions
Abstract Given two operators A and T ( A ≥ 0 , ‖ A ‖ = 1 ) on a Hilbert space H satisfying T ⁎ A T ≤ A , we study the maximum subspace of H which reduces M = A 1 / 2 T to a quasi-isometry, that is on which the equality M ⁎ M = M ⁎ 2 M 2 holds. In some cases, this subspace coincides with the maximum subspace which reduces M to a normal partial isometry, for example when A = T T ⁎ , and in particular if T ⁎ is a cohyponormal contraction. In this case the corresponding subspace can be completely described in terms of asymptotic limit of the contraction T. When M is quasinormal and M ⁎ M = A then the former above quoted subspace reduces to the kernel of A − A 2 . The case of an arbitrary contra…