0000000000083985

AUTHOR

Hagen Söngen

showing 11 related works from this author

Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy

2018

It seems natural to assume that defects at mineral surfaces critically influence interfacial processes such as the dissolution and growth of minerals in water. The experimental verification of this claim, however, is challenging and requires real-space methods with utmost spatial resolution, such as atomic force microscopy (AFM). While defects at mineral-water interfaces have been resolved in 2D AFM images before, the perturbation of the surrounding hydration structure has not yet been analyzed experimentally. In this Letter, we demonstrate that point defects on the most stable and naturally abundant calcite (10.4) surface can be resolved using high-resolution 3D AFM-even within the fifth h…

Materials scienceField (physics)General Physics and Astronomy02 engineering and technology53001 natural sciences114 Physical sciencesDEFLECTION SENSORMolecular dynamicschemistry.chemical_compoundDISSOLUTION0103 physical sciencesWATERFIELD010306 general physicsImage resolutionDissolutionCalciteMineralResolution (electron density)021001 nanoscience & nanotechnologyCrystallographic defectSIMULATIONSchemistryRESOLUTIONChemical physicsMOLECULAR-DYNAMICS0210 nano-technology
researchProduct

The weight function for charges - A rigorous theoretical concept for Kelvin probe force microscopy

2016

A comprehensive discussion of the physical origins of Kelvin probe force microscopy (KPFM) signals for charged systems is given. We extend the existing descriptions by including the openloop operation mode, which is relevant when performing KPFM in electrolyte solutions. We define the contribution of charges to the KPFM signal by a weight function, which depends on the electric potential and on the capacitance of the tip-sample system. We analyze the sign as well as the lateral decay of this weight function for different sample types, namely, conductive samples as well as dielectric samples with permittivities both larger and smaller than the permittivity of the surrounding medium. Dependin…

PermittivityKelvin probe force microscopeWeight functionta114Condensed matter physicsbusiness.industryChemistryGeneral Physics and AstronomyCharge density02 engineering and technologyDielectric021001 nanoscience & nanotechnologyKelvin probe force microscopy01 natural sciencesSignalCapacitance530Optics0103 physical sciencesElectric potential010306 general physics0210 nano-technologybusiness
researchProduct

Chemical Identification at the Solid–Liquid Interface

2017

Solid-liquid interfaces are decisive for a wide range of natural and technological processes, including fields as diverse as geochemistry and environmental science as well as catalysis and corrosion protection. Dynamic atomic force microscopy nowadays provides unparalleled structural insights into solid-liquid interfaces, including the solvation structure above the surface. In contrast, chemical identification of individual interfacial atoms still remains a considerable challenge. So far, an identification of chemically alike atoms in a surface alloy has only been demonstrated under well-controlled ultrahigh vacuum conditions. In liquids, the recent advent of three-dimensional force mapping…

CALCIUM-CARBONATEMOLECULAR-DYNAMICS SIMULATIONSSURFACEInterface (Java)AlloyNanotechnology02 engineering and technologyengineering.material010402 general chemistry53001 natural sciencesAQUEOUS-SOLUTIONCorrosionElectrochemistryWATERGeneral Materials ScienceFIELDSpectroscopySpectroscopySolid liquidATOMIC-FORCE MICROSCOPYta114ChemistryAtomic force microscopyHYDRATIONSolvationSurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesRESOLUTIONengineeringIdentification (biology)0210 nano-technologyLangmuir
researchProduct

Does the Structural Water within Gypsum Remain Crystalline at the Aqueous Interface?

2021

Materials scienceGypsumAqueous solutionInterface (Java)02 engineering and technologyengineering.material010402 general chemistry021001 nanoscience & nanotechnology54001 natural sciencesStructural water0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyChemical engineeringengineeringPhysical and Theoretical Chemistry0210 nano-technology
researchProduct

Three-dimensional atomic force microscopy mapping at the solid-liquid interface with fast and flexible data acquisition

2016

We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated …

Kelvin probe force microscopeMaterials sciencebusiness.industryInterface (computing)Nanotechnology02 engineering and technologyConductive atomic force microscopy010402 general chemistry021001 nanoscience & nanotechnology53001 natural sciencesSample (graphics)0104 chemical sciencesOpticsData acquisitionChemical force microscopyMicroscopy0210 nano-technologybusinessInstrumentationFrequency modulationReview of Scientific Instruments
researchProduct

Three-dimensional solvation structure of ethanol on carbonate minerals

2020

Calcite and magnesite are important mineral constituents of the earth’s crust. In aqueous environments, these carbonates typically expose their most stable cleavage plane, the (10.4) surface. It is known that these surfaces interact with a large variety of organic molecules, which can result in surface restructuring. This process is decisive for the formation of biominerals. With the development of 3D atomic force microscopy (AFM) it is now possible to image solid–liquid interfaces with unprecedented molecular resolution. However, the majority of 3D AFM studies have been focused on the arrangement of water at carbonate surfaces. Here, we present an analysis of the assembly of ethanol – an o…

DYNAMICSMaterials scienceADSORPTIONSURFACECarbonate mineralsIonic bondingGeneral Physics and Astronomy02 engineering and technologylcsh:Chemical technology010402 general chemistrylcsh:Technology01 natural sciencesFull Research Paper3D AFMGENERAL FORCE-FIELDMolecular dynamicschemistry.chemical_compoundCALCITEMoleculeNanotechnologyWATERlcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringlcsh:ScienceCalcitelcsh:THYDRATIONSolvationMD simulation021001 nanoscience & nanotechnologymagnesite540lcsh:QC1-9990104 chemical sciencesNanosciencechemistryChemical physicsCONJUGATE GRADIENTSCarbonatelcsh:Qethanol0210 nano-technologycalcitelcsh:Physicssolvation structureMagnesite
researchProduct

Quantitative atomic force microscopy

2017

A variety of atomic force microscopy (AFM) modes is employed in the field of surface science. The most prominent AFM modes include the amplitude modulation (AM) and the frequency modulation (FM) mode. Over the years, different ways for analyzing data acquired with different AFM modes have been developed, where each analysis is usually based on mode-specific assumptions and approximations. Checking the validity of the seemingly different approximations employed in the various analysis methods can be a tedious task. Moreover, a straightforward comparison of data analyzed with different methods can, therefore, be challenging. Here, we combine the existing evaluation methods which have been sep…

Surface (mathematics)Physicsatomic force microscopyquantitative analysisField (physics)Atomic force microscopyMode (statistics)operation modeHarmonic (mathematics)Nanotechnology02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics53001 natural sciencesSet (abstract data type)Amplitude modulation0103 physical sciencesGeneral Materials ScienceStatistical physics010306 general physics0210 nano-technologyFrequency modulationJournal of Physics: Condensed Matter
researchProduct

Long-Range Order Induced by Intrinsic Repulsion on an Insulating Substrate

2015

An ordered arrangement of molecular stripes with equidistant appearance is formed upon the adsorption of 3-hydroxybenzoic acid onto calcite (10.4) held at room temperature. In a detailed analysis of the next-neighbor stripe distances measured in noncontact atomic force microscopy images at various molecular coverages, we compare the observed stripe arrangement with a random arrangement of noninteracting stripes. The experimentally obtained distance distribution deviates substantially from what is expected for a random distribution of noninteracting stripes, providing direct evidence for the existence of a repulsive interaction between the stripes. At low molecular coverage, where the averag…

Range (particle radiation)Condensed matter physicsChemistryDirect evidenceAtomic force microscopy02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciences530Surfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyOrder (biology)Condensed Matter::Superconductivity0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsEquidistantPhysical and Theoretical Chemistry010306 general physics0210 nano-technology
researchProduct

Generic nature of long-range repulsion mechanism on a bulk insulator?

2017

Dynamic atomic force microscopy measurements are reported that provide evidence for the presence of long-range repulsion in molecular self-assembly on a bulk insulator surface. We present the structures formed from four different benzoic acid derivatives on the (10.4) cleavage plane of calcite kept in ultra-high vacuum. These molecules have in common that they self-assemble into molecular stripes when deposited onto the surface held at room temperature. For all molecules tested, a detailed analysis of the stripe-to-stripe distance distribution reveals a clear deviation from what would be expected for randomly placed, non-interacting stripes (i.e., geometric distribution). When excluding kin…

[PHYS.PHYS]Physics [physics]/Physics [physics]ChemistryAtomic force microscopyfood and beveragesInsulator (electricity)02 engineering and technologyGeometric distribution021001 nanoscience & nanotechnologyKinetic energyElectrostatics01 natural sciences530Chemical physicsComputational chemistry0103 physical sciencesMolecule[CHIM]Chemical SciencesPhysical and Theoretical Chemistry010306 general physics0210 nano-technology
researchProduct

Interpretation of KPFM Data with the Weight Function for Charges

2018

The KPFM signal for systems containing local charges can be expressed as a weighted sum over all local charges. The weight function for charges quantifies the contribution of each charge, depending on its position. In this chapter, we evaluate the KPFM weight function for charges by analyzing several application-relevant model systems. The intention of this chapter is to provide insights into the KPFM contrast formation in order to facilitate the KPFM data interpretation. For this, we concentrate on three model systems: (A) a conductive sample in ultra-high vacuum, (B) a dielectric sample in ultra-high vacuum, and (C) a dielectric sample in water. We calculate the weight function for charge…

PhysicsWeight functionCondensed matter physicsPosition (vector)Physics::Atomic and Molecular ClustersCharge (physics)DielectricSignalElectrical conductorSign (mathematics)Interpretation (model theory)
researchProduct

Imaging Static Charge Distributions: A Comprehensive KPFM Theory

2018

We analyze Kelvin probe force microscopy (KPFM) for tip-sample systems that contain static charges by presenting a rigorous derivation for the respective KPFM signal in all common KPFM modes, namely amplitude modulation, frequency modulation, or heterodyne detection in the static, open-loop or closed-loop variant. The electrostatic model employed in the derivation is based on a general electrostatic analysis of an arbitrary tip-sample geometry formed by two metals, and which can include a static charge distribution and dielectric material in-between. The effect of the electrostatic force on the oscillating tip is calculated from this model within the harmonic approximation, and the observab…

PhysicsKelvin probe force microscopeWeight functionOscillationCharge densityCharge (physics)02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSignalAmplitude modulation0103 physical sciencesPhysics::Atomic and Molecular ClustersHeterodyne detectionAtomic physics010306 general physics0210 nano-technology
researchProduct