0000000000083985
AUTHOR
Hagen Söngen
Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy
It seems natural to assume that defects at mineral surfaces critically influence interfacial processes such as the dissolution and growth of minerals in water. The experimental verification of this claim, however, is challenging and requires real-space methods with utmost spatial resolution, such as atomic force microscopy (AFM). While defects at mineral-water interfaces have been resolved in 2D AFM images before, the perturbation of the surrounding hydration structure has not yet been analyzed experimentally. In this Letter, we demonstrate that point defects on the most stable and naturally abundant calcite (10.4) surface can be resolved using high-resolution 3D AFM-even within the fifth h…
The weight function for charges - A rigorous theoretical concept for Kelvin probe force microscopy
A comprehensive discussion of the physical origins of Kelvin probe force microscopy (KPFM) signals for charged systems is given. We extend the existing descriptions by including the openloop operation mode, which is relevant when performing KPFM in electrolyte solutions. We define the contribution of charges to the KPFM signal by a weight function, which depends on the electric potential and on the capacitance of the tip-sample system. We analyze the sign as well as the lateral decay of this weight function for different sample types, namely, conductive samples as well as dielectric samples with permittivities both larger and smaller than the permittivity of the surrounding medium. Dependin…
Chemical Identification at the Solid–Liquid Interface
Solid-liquid interfaces are decisive for a wide range of natural and technological processes, including fields as diverse as geochemistry and environmental science as well as catalysis and corrosion protection. Dynamic atomic force microscopy nowadays provides unparalleled structural insights into solid-liquid interfaces, including the solvation structure above the surface. In contrast, chemical identification of individual interfacial atoms still remains a considerable challenge. So far, an identification of chemically alike atoms in a surface alloy has only been demonstrated under well-controlled ultrahigh vacuum conditions. In liquids, the recent advent of three-dimensional force mapping…
Does the Structural Water within Gypsum Remain Crystalline at the Aqueous Interface?
Three-dimensional atomic force microscopy mapping at the solid-liquid interface with fast and flexible data acquisition
We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated …
Three-dimensional solvation structure of ethanol on carbonate minerals
Calcite and magnesite are important mineral constituents of the earth’s crust. In aqueous environments, these carbonates typically expose their most stable cleavage plane, the (10.4) surface. It is known that these surfaces interact with a large variety of organic molecules, which can result in surface restructuring. This process is decisive for the formation of biominerals. With the development of 3D atomic force microscopy (AFM) it is now possible to image solid–liquid interfaces with unprecedented molecular resolution. However, the majority of 3D AFM studies have been focused on the arrangement of water at carbonate surfaces. Here, we present an analysis of the assembly of ethanol – an o…
Quantitative atomic force microscopy
A variety of atomic force microscopy (AFM) modes is employed in the field of surface science. The most prominent AFM modes include the amplitude modulation (AM) and the frequency modulation (FM) mode. Over the years, different ways for analyzing data acquired with different AFM modes have been developed, where each analysis is usually based on mode-specific assumptions and approximations. Checking the validity of the seemingly different approximations employed in the various analysis methods can be a tedious task. Moreover, a straightforward comparison of data analyzed with different methods can, therefore, be challenging. Here, we combine the existing evaluation methods which have been sep…
Long-Range Order Induced by Intrinsic Repulsion on an Insulating Substrate
An ordered arrangement of molecular stripes with equidistant appearance is formed upon the adsorption of 3-hydroxybenzoic acid onto calcite (10.4) held at room temperature. In a detailed analysis of the next-neighbor stripe distances measured in noncontact atomic force microscopy images at various molecular coverages, we compare the observed stripe arrangement with a random arrangement of noninteracting stripes. The experimentally obtained distance distribution deviates substantially from what is expected for a random distribution of noninteracting stripes, providing direct evidence for the existence of a repulsive interaction between the stripes. At low molecular coverage, where the averag…
Generic nature of long-range repulsion mechanism on a bulk insulator?
Dynamic atomic force microscopy measurements are reported that provide evidence for the presence of long-range repulsion in molecular self-assembly on a bulk insulator surface. We present the structures formed from four different benzoic acid derivatives on the (10.4) cleavage plane of calcite kept in ultra-high vacuum. These molecules have in common that they self-assemble into molecular stripes when deposited onto the surface held at room temperature. For all molecules tested, a detailed analysis of the stripe-to-stripe distance distribution reveals a clear deviation from what would be expected for randomly placed, non-interacting stripes (i.e., geometric distribution). When excluding kin…
Interpretation of KPFM Data with the Weight Function for Charges
The KPFM signal for systems containing local charges can be expressed as a weighted sum over all local charges. The weight function for charges quantifies the contribution of each charge, depending on its position. In this chapter, we evaluate the KPFM weight function for charges by analyzing several application-relevant model systems. The intention of this chapter is to provide insights into the KPFM contrast formation in order to facilitate the KPFM data interpretation. For this, we concentrate on three model systems: (A) a conductive sample in ultra-high vacuum, (B) a dielectric sample in ultra-high vacuum, and (C) a dielectric sample in water. We calculate the weight function for charge…
Imaging Static Charge Distributions: A Comprehensive KPFM Theory
We analyze Kelvin probe force microscopy (KPFM) for tip-sample systems that contain static charges by presenting a rigorous derivation for the respective KPFM signal in all common KPFM modes, namely amplitude modulation, frequency modulation, or heterodyne detection in the static, open-loop or closed-loop variant. The electrostatic model employed in the derivation is based on a general electrostatic analysis of an arbitrary tip-sample geometry formed by two metals, and which can include a static charge distribution and dielectric material in-between. The effect of the electrostatic force on the oscillating tip is calculated from this model within the harmonic approximation, and the observab…